
PG-08540-001_v8.4.0. Early Access (EA) | January 2022

NVIDIA TensorRT

Developer Guide | NVIDIA Docs

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | ii

Table of Contents

Chapter 1. Introduction.. 1
1.1. Structure of this Guide... 1

1.2. Samples... 1

1.3. Complementary GPU Features.. 1

1.4. Complementary Software... 2

1.5. ONNX..2

1.6. Code Analysis Tools..3

1.7. API Versioning... 3

1.8. Deprecation Policy.. 3

1.9. Support.. 3

1.10. How Do I Report A Bug?.. 4

Chapter 2. TensorRT’s Capabilities... 5
2.1. C++ and Python APIs.. 5

2.2. The Programming Model..5

2.2.1. The Build Phase... 5

2.2.2. The Runtime Phase..6

2.3. Plugins... 7

2.4. Types and Precision..7

2.5. Quantization...8

2.6. Tensors and Data Formats.. 8

2.7. Dynamic Shapes..8

2.8. DLA...9

2.9. Updating Weights.. 9

2.11. Polygraphy... 9

Chapter 3. The C++ API.. 11
3.1. The Build Phase..11

3.1.1. Creating a Network Definition... 11

3.1.2. Importing a Model using the ONNX Parser..12

3.1.3. Building an Engine... 12

3.2. Deserializing a Plan..13

3.3. Performing Inference..13

Chapter 4. The Python API... 15
4.1. The Build Phase..15

4.1.1. Creating a Network Definition in Python.. 15

4.1.2. Importing a Model using the ONNX Parser..15

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | iii

4.1.3. Building an Engine... 16

4.2. Deserializing a Plan..16

4.3. Performing Inference..16

Chapter 5. How TensorRT Works...18
5.1. Object Lifetimes.. 18

5.2. Error Handling and Logging...18

5.3. Memory.. 19

5.3.1. The Build Phase... 19

5.3.2. The Runtime Phase..19

5.4. Threading... 20

5.5. Determinism.. 21

Chapter 6. Advanced Topics... 22
6.1. The Timing Cache... 22

6.2. Refitting An Engine... 22

6.3. Algorithm Selection and Reproducible Builds.. 24

6.4. Creating A Network Definition From Scratch... 25

6.4.1. C++...25

6.4.2. Python..26

6.5. Reduced Precision.. 27

6.5.1. Network-level Control of Precision...27

6.5.2. Layer-level Control of Precision..28

6.5.3. Enabling TF32 Inference Using C++..29

6.6. I/O Formats... 30

6.7. Compatibility of Serialized Engines... 31

6.8. Explicit vs Implicit Batch.. 32

6.9. Sparsity.. 33

6.10. Empty Tensors...34

6.11. Reusing Input Buffers...34

6.12. Engine Inspector... 35

Chapter 7. Working With INT8... 37
7.1. Introduction to Quantization... 37

7.1.1. Quantization Workflows..37

7.1.2. Explicit vs Implicit Quantization...37

7.1.3. Per-Tensor and Per-Channel Quantization.. 39

7.2. Setting Dynamic Range.. 39

7.3. Post-Training Quantization using Calibration... 40

7.3.1. INT8 Calibration Using C++... 41

7.3.2. Calibration Using Python... 42

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | iv

7.4. Explicit Quantization..42

7.4.1. Quantized Weights..43

7.4.2. ONNX Support.. 43

7.4.3. TensorRT Processing Of Q/DQ Networks... 43

7.4.4. Q/DQ Layer-Placement Recommendations.. 46

7.4.5. Q/DQ Limitations.. 50

7.4.6. QAT Networks Using TensorFlow..51

7.4.6.1. Converting TensorFlow To ONNX Quantized Models...52

7.4.7. QAT Networks Using PyTorch... 52

7.5. INT8 Rounding Modes...52

Chapter 8. Working With Dynamic Shapes.. 54
8.1. Specifying Runtime Dimensions...55

8.2. Optimization Profiles...56

8.2.1. Bindings For Multiple Optimization Profiles...57

8.3. Layer Extensions For Dynamic Shapes... 58

8.4. Restrictions For Dynamic Shapes..58

8.5. Execution Tensors vs. Shape Tensors... 59

8.5.1. Formal Inference Rules... 59

8.6. Shape Tensor I/O (Advanced)... 61

8.7. INT8 Calibration With Dynamic Shapes...61

Chapter 9. Extending TensorRT With Custom Layers... 63
9.1. Adding Custom Layers Using The C++ API... 63

9.1.1. Example: Adding A Custom Layer With Dynamic Shape Support Using C++................ 65

9.1.2. Example: Adding A Custom Layer With INT8 I/O Support Using C++............................ 67

9.2. Adding Custom Layers Using The Python API.. 68

9.2.1. Example: Adding A Custom Layer To A TensorRT Network Using Python.................... 68

9.3. Using Custom Layers When Importing A Model With A Parser... 69

9.4. Plugin API Description..69

9.4.1. Migrating Plugins From TensorRT 6.x Or 7.x To TensorRT 8.x.x................................... 69

9.4.2. IPluginV2 API Description.. 70

9.4.3. IPluginCreator API Description... 72

9.5. Best Practices For Custom Layers Plugin.. 73

Chapter 10. Working With Loops... 74
10.1. Defining A Loop...74

10.2. Formal Semantics...76

10.3. Nested Loops.. 77

10.4. Limitations... 77

10.5. Replacing IRNNv2Layer With Loops.. 78

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | v

Chapter 11. Working With Conditionals...79
11.1. Defining A Conditional.. 79

11.2. Conditional Execution... 81

11.3. Nesting and Loops.. 82

11.4. Limitations... 83

11.5. Conditional Examples... 83

11.5.1. Simple If-Conditional..83

11.5.2. Exporting from PyTorch... 84

Chapter 12. Working With DLA.. 85
12.1. Running On DLA During TensorRT Inference... 85

12.1.1. Example: sampleMNIST With DLA.. 86

12.1.2. Example: Enable DLA Mode For A Layer During Network Creation............................87

12.2. DLA Supported Layers..88

12.3. GPU Fallback Mode.. 91

12.4. I/O Formats on DLA..92

12.5. DLA Standalone Mode.. 93

12.6. Customizing DLA Memory Pools..93

Chapter 13. Performance Best Practices..95
13.1. Measuring Performance... 95

13.1.1. Wall-clock Timing...96

13.1.2. CUDA Events...96

13.1.3. Built-In TensorRT Profiling..96

13.1.4. CUDA Profiling Tools..97

13.1.5. Tracking Memory..100

13.2. Optimizing TensorRT Performance..100

13.2.1. Batching.. 100

13.2.2. Streaming..102

13.2.3. CUDA Graphs.. 102

13.2.4. Enabling Fusion.. 103

13.2.4.1. Layer Fusion...103

13.2.4.2. Types Of Fusions..104

13.2.4.3. PointWise Fusion... 106

13.2.4.4. Q/DQ Fusion... 106

13.3. Optimizing Layer Performance...107

13.4. Optimizing for Tensor Cores.. 108

13.5. Optimizing Plugins.. 109

13.6. Optimizing Python Performance.. 109

13.7. Improving Model Accuracy... 110

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | vi

Chapter 14. Troubleshooting..112
14.1. FAQs... 112

14.2. Understanding Error Messages... 115

14.3. Code Analysis Tools.. 119

14.3.1. Compiler Sanitizers.. 119

14.3.1.1. Issues With dlopen And Address Sanitizer...119

14.3.1.2. Issues With dlopen And Thread Sanitizer...119

14.3.1.3. Issues With CUDA And Address Sanitizer.. 119

14.3.2. Valgrind... 120

Appendix A. Appendix... 121
A.1. TensorRT Layers...121

A.2. Data Format Descriptions.. 155

A.3. Command-Line Programs..159

A.4. Glossary... 164

A.5. ACKNOWLEDGEMENTS..164

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | vii

List of Figures

Figure 1. A quantizable AveragePool layer (in blue) is fused with a DQ layer and a Q layer.
All three layers are replaced by a quantized AveragePool layer (in green)................................ 44

Figure 2. An illustration depicting a DQ forward-propagation and Q backward-propagation...... 45

Figure 3. Two examples of how TensorRT fuses convolutional layers. On the left, only the
inputs are quantized. On the right, both inputs and output are quantized................................. 46

Figure 4. Example of a linear operation followed by an activation function.47

Figure 5. Batch normalization is fused with convolution and ReLU while keeping the same
execution order as defined in the pre-fusion network. There is no need to simulate BN-
folding in the training network..47

Figure 6. The precision of xf1 is floating-point, so the output of the fused convolution is
limited to floating-point, and the trailing Q-layer cannot be fused with the convolution........... 48

Figure 7. When xf1 is quantized to INT8, the output of the fused convolution is also INT8,
and the trailing Q-layer is fused with the convolution...49

Figure 8. An example of quantizing a quantizable operation. An element-wise addition is
fused with the input DQs and the output Q..49

Figure 9. An example of suboptimal quantization fusions: contrast the suboptimal fusion
in A and the optimal fusion in B. The extra pair of Q/DQ operations (highlighted with a
glowing-green border) forces the separation of the convolution from the element-wise
addition..50

Figure 10. An example showing scales of Q1 and Q2 are compared for equality, and if equal,
they are allowed to propagate backward. If the engine is refitted with new values for Q1
and Q2 such that Q1 != Q2, then an exception aborts the refitting process................................51

Figure 11. Optimization profile ...57

Figure 12. A TensorRT loop is set by loop boundary layers. Dataflow can leave the
loop only via ILoopOutputLayer. The only back edges allowed are the second input to
IRecurrenceLayer... 75

Figure 13. An if-conditional construct abstract model .. 81

Figure 14. Controlling conditional-execution using IIfConditionalInputLayer placement 82

Figure 15. The layer execution and the kernel being launched on the CPU side.98

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | viii

Figure 16. The kernels actually run on the GPU, in other words, it shows the correlation
between the layer execution and kernel launch on the CPU side and their execution on the
GPU side... 99

Figure 17. Layout format for CHW: The image is divided into HxW matrices, one per
channel, and the matrices are stored in sequence; all the values of a channel are stored
contiguously.. 156

Figure 18. Layout format for HWC: The image is stored as a single HxW matrix, whose
value is actually C-tuple, with a value per channel; all the values of a point (pixel) are
stored contiguously.. 157

Figure 19. A pair of channel values are packed together in each HxW matrix. The result is
a format in which the values of [C/2] HxW matrices are pairs of values of two consecutive
channels.. 158

Figure 20. In this NHWC8 format, the entries of an HxW matrix include the vlaues of all the
channels.. 159

Figure 21. Performance metrics in a normal trtexec run under Nsight Systems (ShuffleNet,
BS=16, best, TitanRTX@1200MHz)... 161

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | ix

List of Tables

Table 1. Supported I/O formats ... 31

Table 2. Implicit vs Explicit Quantization ...38

Table 3. Base classes, ordered from least expressive to most expressive63

Table 4. Types of Tensor Cores ... 109

Table 5. Empty tensor exceptions ..142

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | x

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 1

Chapter 1. Introduction

NVIDIA® TensorRT™ is an SDK that facilitates high performance machine learning inference. It
is designed to work in a complementary fashion with training frameworks such as TensorFlow,
PyTorch, and MXNet. It focuses specifically on running an already-trained network quickly and
efficiently on NVIDIA hardware.

Refer to the NVIDIA TensorRT Installation Guide for instructions on how to install TensorRT.

The NVIDIA TensorRT Quick Start Guide is for users who want to try out TensorRT SDK;
specifically, you’ll learn how to quickly construct an application to run inference on a TensorRT
engine.

1.1. Structure of this Guide
Chapter 1 provides information about how TensorRT is packaged and supported, and how it
fits into the developer ecosystem.

Chapter 2 provides a broad overview of TensorRT capabilities.

Chapters 3 and 4 contain introductions to the C++ and Python APIs respectively.

Subsequent chapters provide more detail about advanced features.

The Appendix contains a layer reference and answers to Frequently Asked Questions.

1.2. Samples
The NVIDIA TensorRT Sample Support Guide illustrates many of the topics discussed in this
guide. Additional samples focusing on embedded applications can be found here.

1.3. Complementary GPU Features
Multi-Instance GPU, or MIG, is a feature of NVIDIA GPUs with NVIDIA Ampere architecture
or later architectures that enables user-directed partitioning of a single GPU into multiple
smaller GPUs. The physical partitions provide dedicated compute and memory slices with
QoS and independent execution of parallel workloads on fractions of the GPU. For TensorRT
applications with low GPU utilization, MIG can produce higher throughput at small or no
impact on latency. The optimal partitioning scheme is application-specific.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html
https://github.com/dusty-nv/jetson-inference
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

Introduction

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 2

1.4. Complementary Software
The NVIDIA Triton™ Inference Server is a higher level library providing optimized inference
across CPUs and GPUs. It provides capabilities for starting and managing multiple models,
and REST and gRPC endpoints for serving inference.

NVIDIA DALI® provides high performance primitives for preprocessing image, audio, and video
data. TensorRT inference can be integrated as a custom operator in a DALI pipeline. A working
example of TensorRT inference integrated as a part of DALI can be found here.

TensorFlow-TensorRT (TF-TRT) is an integration of TensorRT directly into TensorFlow. It
selects subgraphs of TensorFlow graphs to be accelerated by TensorRT, while leaving the
rest of the graph to be executed natively by TensorFlow. The result is still a TensorFlow graph
that you can execute as usual. For TF-TRT examples, refer to Examples for TensorRT in
TensorFlow.

The PyTorch Quantization Toolkit provides facilities for training models at reduced precision,
which can then be exported for optimization in TensorRT.

In addition, the PyTorch Automatic SParsity (ASP) tool provides facilities for training models
with structured sparsity, which can then be exported and allows TensorRT to utilize the faster
sparse tactics on NVIDIA Ampere GPUs.

TensorRT is integrated with NVIDIA’s profiling tools, NVIDIA Nsight™ Systems and NVIDIA®

Deep Learning Profiler (DLProf).

A restricted subset of TensorRT is certified for use in NVIDIA DRIVE® products. Some APIs are
marked for use only in NVIDIA DRIVE and are not supported for general use.

1.5. ONNX
TensorRT’s primary means of importing a trained model from a framework is via the ONNX
interchange format. TensorRT ships with an ONNX parser library to assist in importing
models. Where possible, the parser is backward compatible up to opset 7; the ONNX Model
Opset Version Converter can assist in resolving incompatibilities.

The GitHub version may support later opsets than the version shipped with TensorRT refer to
the ONNX-TensorRT operator support matrix for the latest information on the supported opset
and operators.

The ONNX operator support list for TensorRT can be found here.

PyTorch natively supports ONNX export. For TensorFlow, the recommended method is
tf2onnx.

A good first step after exporting a model to ONNX is to run constant folding using Polygraphy.
This can often solve TensorRT conversion issues in the ONNX parser and generally simplify
the workflow. For details, refer to this example. In some cases, it may be necessary to modify
the ONNX model further, for example, to replace subgraphs with plugins or reimplement
unsupported operations in terms of other operations. To make this process easier, you can
use ONNX-GraphSurgeon.

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/index.html
https://docs.nvidia.com/deeplearning/dali/user-guide/docs/#nvidia-dali-documentation
https://github.com/NVIDIA/DL4AGX
https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html
https://github.com/tensorflow/tensorrt
https://github.com/tensorflow/tensorrt
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html
https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://developer.nvidia.com/drive
https://onnx.ai/
https://github.com/onnx/onnx/blob/master/docs/VersionConverter.md
https://github.com/onnx/onnx/blob/master/docs/VersionConverter.md
https://github.com/onnx/onnx-tensorrt/
https://github.com/onnx/onnx-tensorrt/blob/master/docs/operators.md
https://github.com/onnx/onnx-tensorrt/blob/master/docs/operators.md
https://pytorch.org/docs/stable/onnx.html
https://github.com/onnx/tensorflow-onnx
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy/examples/cli/surgeon/02_folding_constants
https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon

Introduction

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 3

1.6. Code Analysis Tools
For guidance using the valgrind and clang sanitizer tools with TensorRT, refer to the
Troubleshooting chapter.

1.7. API Versioning
TensorRT version number (MAJOR.MINOR.PATCH) follows Semantic Versioning 2.0.0 for its
public APIs and library ABIs. Version numbers change as follows:

 1. MAJOR version when making incompatible API or ABI changes
 2. MINOR version when adding functionality in a backward-compatible manner
 3. PATCH version when making backward-compatible bug fixes

Note that semantic versioning does not extend to serialized objects. To reuse plan files, and
timing caches, version numbers must match across major, minor, patch, and build versions.
Calibration caches can typically be reused within a major version but compatibility is not
guaranteed.

1.8. Deprecation Policy
Deprecation is used to inform developers that some APIs and tools are no longer
recommended for use. Beginning with version 8.0, TensorRT has the following deprecation
policy:

‣ Deprecation notices are communicated in the release notes. Deprecated API elements are
marked with the TRT_DEPRECATED macro where possible.

‣ TensorRT provides a 12-month migration period after the deprecation.

‣ APIs and tools continue to work during the migration period.

‣ After the migration period ends, APIs and tools are removed in a manner consistent with
semantic versioning.

For any APIs and tools specifically deprecated in TensorRT 7.x, the 12-month migration period
starts from the TensorRT 8.0 GA release date.

1.9. Support
Support, resources, and information about TensorRT can be found online at https://
developer.nvidia.com/tensorrt. This includes blogs, samples, and more.

In addition, you can access the NVIDIA DevTalk TensorRT forum at https://devtalk.nvidia.com/
default/board/304/tensorrt/ for all things related to TensorRT. This forum offers the possibility

https://semver.org/#semantic-versioning-200
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://devtalk.nvidia.com/default/board/304/tensorrt/
https://devtalk.nvidia.com/default/board/304/tensorrt/

Introduction

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 4

of finding answers, making connections, and getting involved in discussions with customers,
developers, and TensorRT engineers.

1.10. How Do I Report A Bug?
We appreciate all types of feedback. If you encounter any issues, please report them by
following these steps.

Procedure

 1. Register for the NVIDIA Developer website.
 2. Log in to the developer site.
 3. Click on your name in the upper right corner.
 4. Click My account > My Bugs and select Submit a New Bug.
 5. Fill out the bug reporting page. Be descriptive and if possible, provide the steps that you

are following to help reproduce the problem.
 6. Click Submit a bug.

https://developer.nvidia.com/

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 5

Chapter 2. TensorRT’s Capabilities

This chapter provides an overview of what you can do with TensorRT. It is intended to be useful
to all TensorRT users.

2.1. C++ and Python APIs
TensorRT’s API has language bindings for both C++ and Python, with nearly identical
capabilities. The Python API facilitates interoperability with Python data processing toolkits
and libraries like NumPy and SciPy. The C++ API can be more efficient, and may better meet
some compliance requirements, for example in automotive applications.

Note: The Python API is not available for all platforms. For more information, refer to the
NVIDIA TensorRT Support Matrix.

2.2. The Programming Model
TensorRT operates in two phases. In the first phase, usually performed offline, you provide
TensorRT with a model definition, and TensorRT optimizes it for a target GPU. In the second
phase, you use the optimized model to run inference.

2.2.1. The Build Phase
The highest-level interface for the build phase of TensorRT is the Builder (C++, Python). The
builder is responsible for optimizing a model, and producing an Engine.

In order to build an engine, you need to:

‣ Create a network definition

‣ Specify a configuration for the builder

‣ Call the builder to create the engine

The NetworkDefinition interface (C++, Python) is used to define the model. The most
common path to transfer a model to TensorRT is to export it from a framework in ONNX
format, and use TensorRT’s ONNX parser to populate the network definition. However, you can

https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Builder.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_network_definition.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/Network.html#inetworkdefinition

TensorRT’s Capabilities

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 6

also construct the definition step by step using TensorRT’s Layer (C++, Python) and Tensor (C
++, Python) interfaces.

Whichever way you choose, you must also define which tensors are the inputs and outputs of
the network. Tensors that are not marked as outputs are considered to be transient values
that can be optimized away by the builder. Input and output tensors must be named, so that at
runtime, TensorRT knows how to bind the input and output buffers to the model.

The BuilderConfig interface (C++, Python) is used to specify how TensorRT should optimize
the model. Among the configuration options available, you can control TensorRT’s ability
to reduce the precision of calculations, control the tradeoff between memory and runtime
execution speed, and constrain the choice of CUDA® kernels. Since the builder can take
minutes or more to run, you can also control how the builder searches for kernels, and cached
search results for use in subsequent runs.

Once you have a network definition and a builder configuration, you can call the builder to
create the engine. The builder eliminates dead computations, folds constants, and reorders
and combines operations to run more efficiently on the GPU. It can optionally reduce the
precision of floating-point computations, either by simply running them in 16-bit floating
point, or by quantizing floating point values so that calculations can be performed using 8-bit
integers. It also times multiple implementations of each layer with varying data formats, then
computes an optimal schedule to execute the model, minimizing the combined cost of kernel
executions and format transforms.

The builder creates the engine in a serialized form called a plan, which can be deserialized
immediately, or saved to disk for later use.

Note:

‣ Engines created by TensorRT are specific to both the TensorRT version with which they
were created and the GPU on which they were created.

‣ TensorRT’s network definition does not deep-copy parameter arrays (such as the weights
for a convolution). Therefore, you must not release the memory for those arrays until the
build phase is complete. When importing a network using the ONNX parser, the parser
owns the weights, so it must not be destroyed until the build phase is complete.

‣ The builder times algorithms to determine the fastest. Running the builder in parallel with
other GPU work may perturb the timings, resulting in poor optimization.

2.2.2. The Runtime Phase
The highest-level interface for the execution phase of TensorRT is the Runtime (C++, Python).

When using the runtime, you will typically carry out the following steps:

‣ Deserialize a plan to create an engine

‣ Create an execution context from the engine

Then, repeatedly:

‣ Populate input buffers for inference

‣ Call enqueue() or execute() on the execution context to run inference

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_layer.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/LayerBase.html#ilayer
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_tensor.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_tensor.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Graph/LayerBase.html#itensor
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_builder_config.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_runtime.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Runtime.html

TensorRT’s Capabilities

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 7

The Engine interface (C++, Python) represents an optimized model. You can query an engine
for information about the input and output tensors of the network - the expected dimensions,
data type, data format, etc.

The ExecutionContext interface (C++, Python), created from the engine, is the main interface
for invoking inference. The execution context contains all of the state associated with a
particular invocation - thus you can have multiple contexts associated with a single engine,
and run them in parallel.

When invoking inference, you must set up the input and output buffers in the appropriate
locations. Depending on the nature of the data this may be in either CPU or GPU memory. If
not obvious based on your model, you can query the engine to determine in which memory
space to provide the buffer.

Once the buffers are set up, inference can be invoked synchronously (execute) or
asynchronously (enqueue). In the latter case, the required kernels are enqueued on a CUDA
stream, and control is returned to the application as soon as possible. Some networks
require multiple control transfers between CPU and GPU, so control may not return
immediately. To wait for completion of asynchronous execution, synchronize on the stream
using cudaStreamSynchronize.

2.3. Plugins
TensorRT has a Plugin interface to allow applications to provide implementations of
operations that TensorRT does not support natively. Plugins that are created and registered
with TensorRT’s PluginRegistry can be found by the ONNX parser while translating the
network.

TensorRT ships with a library of plugins, and source for many of these and some additional
plugins can be found here.

Refer to the Extending TensorRT With Custom Layers chapter for more details.

2.4. Types and Precision
TensorRT supports computations using FP32, FP16, INT8, Bool, and INT32 data types.

When TensorRT chooses CUDA kernels to implement floating point operations in the network,
it defaults to FP32 implementations. There are two ways to configure different levels of
precision:

‣ To control precision at the model level, BuilderFlag options (C++, Python) can indicate
to TensorRT that it may select lower-precision implementations when searching for the
fastest (and because lower precision is generally faster, if allowed to, it typically will).

Therefore, you can easily instruct TensorRT to use FP16 calculations for your entire model.
For regularized models whose input dynamic range is approximately one, this typically
produces significant speedups with negligible change in accuracy.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_cuda_engine.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Engine.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_execution_context.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
https://github.com/NVIDIA/TensorRT/tree/main/plugin
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#abdc74c40fe7a0c3d05d2caeccfbc29c1
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html#tensorrt.BuilderFlag

TensorRT’s Capabilities

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 8

‣ For finer-grained control, where a layer must run at higher precision because part of the
network is numerically sensitive or requires high dynamic range, arithmetic precision can
be specified for that layer.

Refer to the Reduced Precision section for more details.

2.5. Quantization
TensorRT supports quantized floating point, where floating-point values are linearly
compressed and rounded to 8-bit integers. This significantly increases arithmetic throughput
while reducing storage requirements and memory bandwidth. When quantizing a floating-
point tensor, TensorRT needs to know its dynamic range - that is, what range of values is
important to represent - values outside this range are clamped when quantizing.

Dynamic range information can be calculated by the builder (this is called calibration) based on
representative input data. Or you can perform quantization-aware training in a framework and
import the model to TensorRT with the necessary dynamic range information.

Refer to the Working With INT8 chapter for more details.

2.6. Tensors and Data Formats
When defining a network, TensorRT assumes that tensors are represented by
multidimensional C-style arrays. Each layer has a specific interpretation of its inputs: for
example, a 2D convolution will assume that the last three dimensions of its input are in CHW
format - there is no option to use, for example an WHC format. Refer to the TensorRT Layers
chapter for how each layer interprets its inputs.

Note that tensors are limited to at most 2^31-1 elements.

While optimizing the network, TensorRT performs transformations internally (including to
HWC, but also more complex formats) to use the fastest possible CUDA kernels. In general,
formats are chosen to optimize performance, and applications have no control over the
choices. However, the underlying data formats are exposed at I/O boundaries (network
input and output, and passing data to and from plugins) to allow applications to minimize
unnecessary format transformations.

Refer to the I/O Formats section for more details.

2.7. Dynamic Shapes
By default, TensorRT optimizes the model based on the input shapes (batch size, image
size, etc) at which it was defined. However, the builder can be configured to allow the input
dimensions to be adjusted at runtime. In order to enable this, you specify one or more
instances of OptimizationProfile (C++, Python) in the builder configuration, containing
for each input a minimum and maximum shape, along with an optimization point within that
range.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_optimization_profile.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/OptimizationProfile.html?highlight=optimizationprofile

TensorRT’s Capabilities

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 9

TensorRT creates an optimized engine for each profile, choosing CUDA kernels that work for
all shapes within the [minimum, maximum] range and are fastest for the optimization point -
typically different kernels for each profile. You can then select among profiles at runtime.

Refer to the Working With Dynamic Shapes chapter for more details.

2.8. DLA
TensorRT supports NVIDIA’s Deep Learning Accelerator (DLA), a dedicated inference
processor present on many NVIDIA SoCs which supports a subset of TensorRT’s layers.
TensorRT allows you to execute part of the network on the DLA and the rest on GPU; for
layers which can be executed on either device, you can select the target device in the builder
configuration on a per-layer basis.

Refer to the Working With DLA chapter for more details.

2.9. Updating Weights
When building an engine, you can specify that it may need to later have its weights updated.
This can be useful if you are frequently updating the weights of the model without changing
the structure, such as in reinforcement learning or when retraining a model while retaining
the same structure. Weight updates are performed via the Refitter (C++, Python) interface.

Refer to the Refitting An Engine section for more details.

2.10. trtexec
Included in the samples directory is a command-line wrapper tool called trtexec. trtexec is
a tool to quickly utilize TensorRT without having to develop your own application. The trtexec
tool has three main purposes:

‣ benchmarking networks on random or user-provided input data.

‣ generating serialized engines from models.

‣ generating a serialized timing cache from the builder.

Refer to the trtexec section for more details.

2.11. Polygraphy
Polygraphy is a toolkit designed to assist in running and debugging deep learning models in
TensorRT and other frameworks. It includes a Python API and a command-line interface (CLI)
built using this API.

Among other things, with Polygraphy you can:

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_refitter.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Refitter.html
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/polygraphy
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/polygraphy/tools

TensorRT’s Capabilities

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 10

‣ Run inference among multiple backends, like TensorRT and ONNX-Runtime, and compare
results (for example API,CLI)

‣ Convert models to various formats, for example, TensorRT engines with post-training
quantization (for example API,CLI)

‣ View information about various types of models (for example CLI)

‣ Modify ONNX models on the command-line:

‣ Extract subgraphs (for example CLI)

‣ Simplify and sanitize (for example CLI)

‣ Isolate faulty tactics in TensorRT (for example CLI)

For more details, refer to the Polygraphy repository.

https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/api/01_comparing_frameworks
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/run/01_comparing_frameworks
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/api/04_int8_calibration_in_tensorrt
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/convert/01_int8_calibration_in_tensorrt
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/inspect
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/surgeon/01_isolating_subgraphs
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/surgeon/02_folding_constants
https://github.com/NVIDIA/TensorRT/blob/main/tools/Polygraphy/examples/cli/debug/01_debugging_flaky_trt_tactics
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 11

Chapter 3. The C++ API

This chapter illustrates basic usage of the C++ API, assuming you are starting with an ONNX
model. sampleOnnxMNIST illustrates this use case in more detail.

The C++ API can be accessed via the header NvInfer.h, and is in the nvinfer1 namespace.
For example, a simple application might begin with:
#include “NvInfer.h”

using namespace nvinfer1;

Interface classes in the TensorRT C++ API begin with the prefix I, for example ILogger,
IBuilder, etc.

A CUDA context is automatically created the first time TensorRT makes a call to CUDA, if none
exists prior to that point. It is generally preferable to create and configure the CUDA context
yourself before the first call to TensoRT.

In order to illustrate object lifetimes, code in this chapter does not use smart pointers;
however, their use is recommended with TensorRT interfaces.

3.1. The Build Phase
To create a builder, you first need to instantiate the ILogger interface. This example captures
all warning messages but ignores informational messages:
class Logger : public ILogger
{
 void log(Severity severity, const char* msg) noexcept override
 {
 // suppress info-level messages
 if (severity <= Severity::kWARNING)
 std::cout << msg << std::endl;
 }
} logger;

You can then create an instance of the builder:
IBuilder* builder = createInferBuilder(logger);

3.1.1. Creating a Network Definition
Once the builder has been created, the first step in optimizing a model is to create a network
definition:
uint32_t flag = 1U <<static_cast<uint32_t>
 (NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleOnnxMNIST

The C++ API

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 12

INetworkDefinition* network = builder->createNetworkV2(flag);

The kEXPLICIT_BATCH flag is required in order to import models using the ONNX parser.
Refer to the Explicit vs Implicit Batch section for more information.

3.1.2. Importing a Model using the ONNX Parser
Now, the network definition needs to be populated from the ONNX representation. The
ONNX parser API is in the file NvOnnxParser.h, and the parser is in the nvonnxparser C++
namespace.
#include “NvOnnxParser.h”

using namespace nvonnxparser;

You can create an ONNX parser to populate the network as follows:
IParser* parser = createParser(*network, logger);

Then, read the model file and process any errors.
parser->parseFromFile(modelFile,
 static_cast<int32_t>(ILogger::Severity::kWARNING));
for (int32_t i = 0; i < parser.getNbErrors(); ++i)
{
std::cout << parser->getError(i)->desc() << std::endl;
}

An important aspect of a TensorRT network definition is that it contains pointers to model
weights, which are copied into the optimized engine by the builder. Since the network was
created via the parser, the parser owns the memory occupied by the weights, and so the
parser object should not be deleted until after the builder has run.

3.1.3. Building an Engine
The next step is to create a build configuration specifying how TensorRT should optimize the
model.
IBuilderConfig* config = builder->createBuilderConfig();

This interface has many properties that you can set in order to control how TensorRT
optimizes the network. One important property is the maximum workspace size. Layer
implementations often require a temporary workspace, and this parameter limits the
maximum size that any layer in the network can use. If insufficient workspace is provided,
it is possible that TensorRT will not be able to find an implementation for a layer. By default
the workspace is set to the total global memory size of the given device; restrict it when
necessary, for example, when multiple engines are to be built on a single device.
config->setMemoryPoolLimit(MemoryPoolType::kWORKSPACE, 1U << 20);

Once the configuration has been specified, the engine can be built.
IHostMemory* serializedModel = builder->buildSerializedNetwork(*network, *config);

Since the serialized engine contains the necessary copies of the weights, the parser, network
definition, builder configuration and builder are no longer necessary and may be safely
deleted:
delete parser;
delete network;
delete config;

The C++ API

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 13

delete builder;

The engine can then be saved to disk, and the buffer into which it was serialized can be
deleted.
delete serializedModel

Note: Serialized engines are not portable across platforms or TensorRT versions. Engines
are specific to the exact GPU model they were built on (in addition to the platform and the
TensorRT version).

3.2. Deserializing a Plan
Assuming you have previously serialized an optimized model and wish to perform inference,
you will need to create an instance of the Runtime interface. Like the builder, the runtime
requires an instance of the logger:
IRuntime* runtime = createInferRuntime(logger);

Assuming you have read the model from into a buffer, you can then deserialize it to obtain an
engine:
ICudaEngine* engine =
 runtime->deserializeCudaEngine(modelData, modelSize);

3.3. Performing Inference
The engine holds the optimized model, but to perform inference we will need to manage
additional state for intermediate activations. This is done via the ExecutionContext interface:
IExecutionContext *context = engine->createExecutionContext();

An engine can have multiple execution contexts, allowing one set of weights to be used for
multiple overlapping inference tasks. (A current exception to this is when using dynamic
shapes, when each optimization profile can only have one execution context.)

To perform inference, you must pass TensorRT buffers for input and output, which TensorRT
requires you to specify in an array of pointers. You can query the engine using the names you
provided for input and output tensors to find the right positions in the array:
int32_t inputIndex = engine->getBindingIndex(INPUT_NAME);
int32_t outputIndex = engine->getBindingIndex(OUTPUT_NAME);

Using these indices, set up a buffer array pointing to the input and output buffers on the GPU:
void* buffers[2];
buffers[inputIndex] = inputBuffer;
buffers[outputIndex] = outputBuffer;

You can then call TensorRT’s enqueue method to start inference asynchronously using a
CUDA stream:
context->enqueueV2(buffers, stream, nullptr);

It is common to enqueue cudaMemcpyAsync() before and after the kernels to move data from
the GPU if it is not already there. The final argument to enqueueV2() is an optional CUDA

The C++ API

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 14

event that is signaled when the input buffers have been consumed, and their memory can be
safely reused.

To determine when the kernel (and possibly memcpy()) are complete, use standard CUDA
synchronization mechanisms such as events or waiting on the stream.

If you prefer synchronous inference, use the executeV2 method instead of enqueueV2.

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 15

Chapter 4. The Python API

This chapter illustrates basic usage of the Python API, assuming you are starting with an
ONNX model. The onnx_resnet50.py sample illustrates this use case in more detail.

The Python API can be accessed via the tensorrt module:
import tensorrt as trt

4.1. The Build Phase
To create a builder, you need to first create a logger. The Python bindings include a simple
logger implementation that logs all messages above a certain severity to stdout.
logger = trt.Logger(trt.Logger.WARNING)

Alternatively, it is possible to define your own implementation of the logger by deriving from
the ILogger class:
class MyLogger(trt.ILogger):
 def __init__(self):
 trt.ILogger.__init__(self)

 def log(self, severity, msg):
 pass # Your custom logging implementation here

logger = MyLogger()

You can then create a builder:
builder = trt.Builder(logger)

4.1.1. Creating a Network Definition in Python
Once the builder has been created, the first step in optimizing a model is to create a network
definition:
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

The EXPLICIT_BATCH flag is required in order to import models using the ONNX parser. Refer
to the Explicit vs Implicit Batch section for more information.

4.1.2. Importing a Model using the ONNX Parser
Now, the network definition needs to be populated from the ONNX representation. You can
create an ONNX parser to populate the network as follows:
parser = trt.OnnxParser(network, logger)

https://github.com/NVIDIA/TensorRT/blob/main/samples/python/introductory_parser_samples/onnx_resnet50.py

The Python API

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 16

Then, read the model file and process any errors:
success = parser.parse_from_file(model_path)
for idx in range(parser.num_errors):
 print(parser.get_error(idx))

if not success:
 pass # Error handling code here

4.1.3. Building an Engine
The next step is to create a build configuration specifying how TensorRT should optimize the
model:
config = builder.create_builder_config()

This interface has many properties that you can set in order to control how TensorRT
optimizes the network. One important property is the maximum workspace size. Layer
implementations often require a temporary workspace, and this parameter limits the
maximum size that any layer in the network can use. If insufficient workspace is provided, it is
possible that TensorRT will not be able to find an implementation for a layer:
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) # 1 MiB

Once the configuration has been specified, the engine can be built and serialized with:
serialized_engine = builder.build_serialized_network(network, config)

It may be useful to save the engine to a file for future use. You can do that like so:
with open(“sample.engine”, “wb”) as f:
 f.write(serialized_engine)

Note: Serialized engines are not portable across platforms or TensorRT versions. Engines
are specific to the exact GPU model they were built on (in addition to the platform and the
TensorRT version).

4.2. Deserializing a Plan
To perform inference, you will first need to deserialize the engine using the Runtime interface.
Like the builder, the runtime requires an instance of the logger.
runtime = trt.Runtime(logger)

You can then deserialize the engine from a memory buffer:
engine = runtime.deserialize_cuda_engine(serialized_engine)

If you need to first load the engine from a file, run:
with open(“sample.engine”, “rb”) as f:
 serialized_engine = f.read()

4.3. Performing Inference
The engine holds the optimized model, but to perform inference requires additional state for
intermediate activations. This is done via the IExecutionContext interface:

The Python API

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 17

context = engine.create_execution_context()

An engine can have multiple execution contexts, allowing one set of weights to be used for
multiple overlapping inference tasks. (A current exception to this is when using dynamic
shapes, when each optimization profile can only have one execution context.)

To perform inference, you must pass TensorRT buffers for inputs and outputs, which TensorRT
requires you to specify in a list of GPU pointers. You can query the engine using the names you
provided for input and output tensors to find the right positions in the array:
input_idx = engine[input_name]
output_idx = engine[output_name]

Using these indices, set up GPU buffers for each input and output. Several Python packages
allow you to allocate memory on the GPU, including, but not limited to, PyTorch, the
Polygraphy CUDA wrapper, and PyCUDA.

Then, create a list of GPU pointers. For example, for PyTorch CUDA tensors, you can access
the GPU pointer using the data_ptr() method; for Polygraphy DeviceArray, use the ptr
attribute:
buffers = [None] * 2 # Assuming 1 input and 1 output
buffers[input_idx] = input_ptr
buffers[output_idx] = output_ptr

After populating the input buffer, you can call TensorRT’s execute_async method to start
inference asynchronously using a CUDA stream.

First, create the CUDA stream. If you already have a CUDA stream, you can use a pointer to
the existing stream. For example, for PyTorch CUDA streams, i.e. torch.cuda.Stream(), you
can access the pointer using the cuda_stream property; for Polygraphy CUDA streams, use
the ptr attribute.

Next, start inference:
context.execute_async_v2(buffers, stream_ptr)

It is common to enqueue asynchronous memcpy() before and after the kernels to move data
from the GPU if it is not already there.

To determine when the kernel (and possibly memcpy()) are complete, use the standard CUDA
synchronization mechanisms such as events or waiting on the stream. For example, with
Polygraphy, use:
stream.synchronize()

If you prefer synchronous inference, use the execute_v2 method instead of
execute_async_v2.

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 18

Chapter 5. How TensorRT Works

This chapter provides more detail on how TensorRT works.

5.1. Object Lifetimes
TensorRT’s API is class-based, with some classes acting as factories for other classes. For
objects owned by the user, the lifetime of a factory object must span the lifetime of objects it
creates. For example, the NetworkDefinition and BuilderConfig classes are created from
the builder class, and objects of those classes should be destroyed before the builder factory
object.

An important exception to this rule is creating an engine from a builder. Once you have created
an engine, you may destroy the builder, network, parser and build config and continue using
the engine.

5.2. Error Handling and Logging
When creating TensorRT top-level interfaces (builder, runtime or refitter), you must provide
an implementation of the Logger (C++, Python) interface. The logger is used for diagnostics
and informational messages; its verbosity level is configurable. Since the logger may be used
to pass back information at any point in the lifetime of TensorRT, its lifetime must span any
use of that interface in your application. The implementation must also be thread-safe, since
TensorRT may use worker threads internally.

An API call to an object will use the logger associated with the corresponding top-level
interface. For example, in a call to ExecutionContext::enqueue(), the execution context
was created from an engine, which was created from a runtime, so TensorRT will use the
logger associated with that runtime.

The primary method of error handling is the ErrorRecorde (C++, Python) interface. You can
implement this interface, and attach it to an API object to receive errors associated with that
object. The recorder for an object will also be passed to any others it creates - for example, if
you attach an error recorder to an engine, and create an execution context from that engine,
it will use the same recorder. If you then attach a new error recorder to the execution context,
it will receive only errors coming from that context. If an error is generated but no error
recorder is found, it will be emitted via the associated logger.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_logger.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Logger.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_error_recorder.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ErrorRecorder.html

How TensorRT Works

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 19

Note that CUDA errors are generally asynchronous - so when performing multiple inferences
or other streams of CUDA work asynchronously in a single CUDA context, an asynchronous
GPU error may be observed in a different execution context than the one which generated it.

5.3. Memory
TensorRT uses considerable amounts of device memory, i.e. memory directly accessible by
the GPU, as opposed to the host memory attached to the CPU). Since device memory is often a
constrained resource, it’s important to understand how TensorRT uses it.

5.3.1. The Build Phase
During build, TensorRT allocates device memory for timing layer implementations. Some
implementations can consume a lot of temporary memory, especially with large tensors. You
can control the maximum amount of temporary memory through the builder’s maxWorkspace
attribute. This defaults to the full size of device global memory but can be restricted when
necessary. If the builder finds applicable kernels that could not be run because of insufficient
workspace, it will emit a logging message indicating this.

Even with relatively little workspace however, timing requires creating buffers for input,
output, and weights. TensorRT is robust against the operating system returning out-of-
memory for such allocations, but on some platforms the OS may successfully provide
memory, and subsequently the out-of-memory killer process observes that the system is low
on memory, and kills TensorRT. If this happens free up as much system memory as possible
before retrying.

During the build phase, there will typically be at least two copies of the weights in host
memory: those from the original network, and those included as part of the engine as it is
built. In addition, when TensorRT combines weights (for example convolution with batch
normalization) additional temporary weight tensors will be created.

5.3.2. The Runtime Phase
At runtime, TensorRT uses relatively little host memory, but can use considerable amounts of
device memory.

An engine, on deserialization, allocates device memory to store the model weights. Since the
serialized engine is almost all weights, its size is a good approximation to the amount of device
memory the weights require.

An ExecutionContext uses two kinds of device memory:

‣ Persistent memory required by some layer implementations - for example, some
convolution implementations use edge masks, and this state cannot be shared between
contexts as weights are, because its size depends on the layer input shape, which may vary
across contexts. This memory is allocated on creation of the execution context, and lasts
for its lifetime.

‣ Scratch memory, used to hold intermediate results while processing the network.
This memory is used for intermediate activation tensors. It is also used for temporary

How TensorRT Works

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 20

storage required by layer implementations, the bound for which is controlled by
IBuilderConfig::setMaxWorkspaceSize().

You may optionally create an execution context without scratch memory via
ICudaEngine::createExecutionContextWithoutDeviceMemory() and provide
that memory yourself for the duration of network execution. This allows you to share
it between multiple contexts that are not running concurrently, or for other uses
while inference is not running. The amount of scratch memory required is returned by
ICudaEngine::getDeviceMemorySize().

Information about the amount of persistent memory and scratch memory used by the
execution context is emitted by the builder when building the network, at severity kINFO.
Examining the log, the messages look similar to the following:
[08/12/2021-17:39:11] [I] [TRT] Total Host Persistent Memory: 106528
[08/12/2021-17:39:11] [I] [TRT] Total Device Persistent Memory: 29785600
[08/12/2021-17:39:11] [I] [TRT] Total Scratch Memory: 9970688

By default, TensorRT allocates device memory directly from CUDA. However, you can attach
an implementation of TensorRT’s IGpuAllocator (C++, Python) interface to the builder or
runtime and manage device memory yourself. This is useful if your application wishes to
control all GPU memory and sub-allocate to TensorRT instead of having TensorRT allocate
directly from CUDA.

TensorRT’s dependencies (cuDNN and cuBLAS) can occupy large amounts of device memory.
TensorRT allows you to control whether these libraries are used for inference via the
TacticSources (C++, Python) attribute in the builder configuration. Note that some layer
implementations require these libraries, so that when they’re excluded, the network may not
compile.

The CUDA infrastructure and TensorRT’s device code also consume device memory.
The amount of memory varies by platform, device, and TensorRT version. You can use
cudaGetMemInfo to determine the total amount of device memory in use.

Note: Since CUDA is not in control of memory on unified-memory devices, the results returned
by cudaGetMemInfo may not be accurate on these platforms.

5.4. Threading
In general TensorRT objects are not thread-safe. The expected runtime concurrency model
is that different threads will operate on different execution contexts. The context contains the
state of the network (activation values etc) during execution, so using a context concurrently in
different threads results in undefined behavior.

To support this model, the following operations are thread-safe:

‣ Non-modifying operations on a runtime or engine.

‣ Deserializing an engine from a TensorRT runtime.

‣ Creating an execution context from an engine.

‣ Registering and deregistering plugins.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_gpu_allocator.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/GpuAllocator.html
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cublas
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/namespacenvinfer1.html#a999ab7be02c9acfec0b2c9cc3673abb4
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/BuilderConfig.html?highlight=tactic_sources#tensorrt.IBuilderConfig.set_tactic_sources

How TensorRT Works

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 21

There are no thread-safety issues with using multiple builders in different threads; however,
the builder uses timing to determine the fastest kernel for the parameters provided, and
using multiple builders with the same GPU will perturb the timing and TensorRT’s ability
to construct optimal engines. There are no such issues using multiple threads to build with
different GPUs.

Note: Plugins based on IPluginV2 are shared at the engine level, not the execution context
level, and thus such plugins which may be used simultaneously by multiple threads need
to manage their resources in a thread-safe manner. Plugins based on IPluginV2Ext and
derivative interfaces are cloned when an ExecutionContext is created, so this is not required.

5.5. Determinism
TensorRT builder uses timing to find the fastest kernel to implement a given operator. Timing
kernels is subject to noise - other work running on the GPU, fluctuations in GPU clock speed,
etc. Timing noise means that on successive runs of the builder, the same implementation may
not be selected.

The AlgorithmSelector (C++, Python) interface allows you to force the builder to pick a
particular implementation for a given layer. You can use this to ensure that the same kernels
are picked by the builder from run to run. For more information, refer to the Algorithm
Selection and Reproducible Builds section.

Once an engine has been built it is deterministic: providing the same input in the same
runtime environment will produce the same output.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_algorithm_selector.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/AlgorithmSelector/pyAlgorithmSelector.html

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 22

Chapter 6. Advanced Topics

6.1. The Timing Cache
To reduce the builder time, TensorRT creates a layer timing cache to keep the layer profiling
information during the builder phase. The information it contains is specific to the targeted
builder devices, CUDA and TensorRT versions, and BuilderConfig parameters that can change
the layer implementation such as BuilderFlag::kTF32 or BuilderFlag::kREFIT.

If there are other layers with the same input/output tensor configuration and layer
parameters, the TensorRT builder skips profiling and reuses the cached result for the
repeated layers. If a timing query misses in the cache, the builder times the layer and updates
the cache.

The timing cache can be serialized and deserialized. You can load a serialized cache from a
buffer via IBuilderConfig::createTimingCache:
ITimingCache* cache =
 config->createTimingCache(cacheFile.data(), cacheFile.size());

Setting the buffer size to 0 creates a new empty timing cache.

You then attach the cache to a builder configuration before building.
config->setTimingCache(*cache, false);

During the build, the timing cache can be augmented with more information as a result of
cache misses. After the build, it can be serialized for use with another builder.
IHostMemory* serializedCache = cache->serialize();

If there is no timing cache attached to a builder, the builder creates its own temporary local
cache and destroys it when it is done.

The cache is incompatible with algorithm selection (refer to the Algorithm Selection and
Reproducible Builds section). It can be disabled by setting the BuilderFlag.
config->setFlag(BuilderFlag::kDISABLE_TIMING_CACHE);

6.2. Refitting An Engine
TensorRT can refit an engine with new weights without having to rebuild it, however, the option
to do so must be specified when building:
...
config->setFlag(BuilderFlag::kREFIT)

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 23

builder->buildSerializedNetwork(network, config);

Later, you can create a Refitter object:
ICudaEngine* engine = ...;
IRefitter* refitter = createInferRefitter(*engine,gLogger)

Then update the weights. For example, to update the kernel weights for a convolution layer
named “MyLayer”:
Weights newWeights = ...;
refitter->setWeights("MyLayer",WeightsRole::kKERNEL,
 newWeights);

The new weights should have the same count as the original weights used to build the engine.
setWeights returns false if something went wrong, such as a wrong layer name or role or a
change in the weights count.

Because of the way the engine is optimized, if you change some weights, you might have to
supply some other weights too. The interface can tell you what additional weights need to be
supplied.

You can use INetworkDefinition::setWeightsName() to name weights at build time - the
ONNX parser uses this API to associate the weights with the names used in the ONNX model.
Then, later you can use setNamedWeights to update the weights:
Weights newWeights = ...;
refitter->setNamedWeights("MyWeights", newWeights);

setNamedWeights and setWeights can be used at the same time, i.e., you can update weights
with names via setNamedWeights and update those unnamed weights via setWeights.

This typically requires two calls to IRefitter::getMissing, first to get the number of
weights objects that must be supplied, and second to get their layers and roles.
const int32_t n = refitter->getMissing(0, nullptr, nullptr);
std::vector<const char*> layerNames(n);
std::vector<WeightsRole> weightsRoles(n);
refitter->getMissing(n, layerNames.data(),
 weightsRoles.data());

Alternatively, to get the names of all missing weights, run:
const int32_t n = refitter->getMissingWeights(0, nullptr);
std::vector<const char*> weightsNames(n);
refitter->getMissingWeights(n, weightsNames.data());

You can supply the missing weights, in any order:
for (int32_t i = 0; i < n; ++i)
 refitter->setWeights(layerNames[i], weightsRoles[i],
 Weights{...});

The set of missing weights returned is complete, in the sense that supplying only the missing
weights does not generate a need for any more weights.

Once all the weights have been provided, you can update the engine:
bool success = refitter->refitCudaEngine();
assert(success);

If refit returns false, check the log for a diagnostic, perhaps about weights that are still
missing.

You can then delete the refitter:

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 24

delete refitter;

The updated engine behaves as if it had been built from a network updated with the new
weights.

To view all refittable weights in an engine, use refitter->getAll(...) or refitter-
>getAllWeights(...); similarly to how getMissing and getMissingWeights were used
above.

6.3. Algorithm Selection and
Reproducible Builds

The default behavior of TensorRT’s optimizer is to choose the algorithms that globally
minimize the execution time of the engine. It does this by timing each implementation,
and sometimes, and when implementations have similar timings, it’s possible that system
noise will determine which will be chosen on any particular run of the builder. Different
implementations will typically use different order of accumulation of floating point values, and
two implementations may use different algorithms or even run at different precisions. Thus,
different invocations of the builder will typically not result in engines which return bit-identical
results.

Sometimes it’s important to have a deterministic build, or to recreate the algorithm choices
of an earlier build. By providing an implementation of the IAlgorithmSelector interface and
attaching it to a builder configuration with setAlgorithmSelector, you can guide algorithm
selection manually.

The method IAlgorithmSelector::selectAlgorithms receives an AlgorithmContext
containing information about the algorithm requirements for a layer, and a set of Algorithm
choices meeting those requirements. It returns the set of algorithms which TensorRT should
consider for the layer.

The builder will select from these algorithms the one which minimizes the global runtime
for the network. If no choice is returned and BuilderFlag::kREJECT_EMPTY_ALGORITHMS
is unset, TensorRT interprets this to mean that any algorithm may be used for this layer.
To override this behavior and generate an error if an empty list is returned, set the
BuilderFlag::kREJECT_EMPTY_ALGORITHMSS flag.

After TensorRT has finished optimizing the network for a given profile, it calls
reportAlgorithms, which can be used to record the final choice made for each layer.

To build a TensorRT engine deterministically, return a single choice from selectAlgorithms.
To replay choices from an earlier build, use reportAlgorithms to record the choices in that
build, and return them in selectAlgorithms.

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 25

sampleAlgorithmSelector demonstrates how to use the algorithm selector to achieve
determinism and reproducibility in the builder.

Note:

‣ The notion of a “layer” in algorithm selection is different from ILayer in
INetworkDefinition. The “layer” in the former can be equivalent to a collection of
multiple network layers due to fusion optimizations.

‣ Picking the fastest algorithm in selectAlgorithms may not produce the best performance
for the overall network, as it may increase reformatting overhead.

‣ The timing of an IAlgorithm is 0 in selectAlgorithms if TensorRT found that layer to be
a no-op.

‣ reportAlgorithms doesn’t provide the timing and workspace information for an
IAlgorithm that are provided to selectAlgorithms.

6.4. Creating A Network Definition From
Scratch

Instead of using a parser, you can also define the network directly to TensorRT via the Network
Definition API. This scenario assumes that the per-layer weights are ready in host memory to
pass to TensorRT during the network creation.

The following examples create a simple network with Input, Convolution, Pooling,
MatrixMultiply, Shuffle, Activation, and Softmax layers.

6.4.1. C++
Code corresponding to this section can be found in sampleMNISTAPI. In this example the
weights are loaded into a weightMap data structure used in the following code.

First create the builder and network objects. Note that in the following example, the logger is
initialized via the logger.cpp file common to all C++ samples. The C++ sample helper classes
and functions can be found in the common.h header file.
 auto builder =
 SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(sample::gLogger.getTRTLogger()));
 const auto explicitBatchFlag = 1U <<
 static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
 auto network = SampleUniquePtr<nvinfer1::INetworkDefinition>(builder-
>createNetworkV2(explicitBatchFlag));

Refer to the Explicit vs Implicit Batch section for more information about the
kEXPLICIT_BATCH flag.

Add the Input layer to the network by specifying the name, datatype, and full dimensions of the
input tensor. A network can have multiple inputs, although in this sample there is only one:
auto data = network->addInput(INPUT_BLOB_NAME, datatype, Dims4{1, 1, INPUT_H, INPUT_W});

Add the Convolution layer with hidden layer input nodes, strides and weights for filter and bias.
auto conv1 = network->addConvolution(

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNISTAPI
https://github.com/NVIDIA/TensorRT/blob/main/samples/common/logger.cpp
https://github.com/NVIDIA/TensorRT/blob/main/samples/common/common.h

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 26

*data->getOutput(0), 20, DimsHW{5, 5}, weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

Note: Weights passed to TensorRT layers are in host memory.

Add the Pooling layer; note that the output from the previous layer is passed as input.
auto pool1 = network->addPooling(*conv1->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
pool1->setStride(DimsHW{2, 2});

Add the MatrixMultiply layer and Shuffle layer to represent a FullyConnected layer
(IFullyConnectedLayer has been deprecated starting in TensorRT 8.4):
auto ip1 = network->addFullyConnected(*pool1->getOutput(0), 500, weightMap["ip1filter"],
 weightMap["ip1bias"]);
auto relu1 = network->addActivation(*ip1->getOutput(0), ActivationType::kRELU);

Add the SoftMax layer to calculate the final probabilities and set it as the output:
auto prob = network->addSoftMax(*relu1->getOutput(0));
prob->getOutput(0)->setName(OUTPUT_BLOB_NAME);

Mark the output of the softmax layer as the output of the entire network:
network->markOutput(*prob->getOutput(0));

The network representing the MNIST model has now been fully constructed. Refer to sections
Building an Engine and Deserializing a Plan for how to build an engine and run inference with
this network.

6.4.2. Python
Code corresponding to this section can be found in network_api_pytorch_mnist.

This example uses a helper class to hold some of metadata about the model:
class ModelData(object):
 INPUT_NAME = "data"
 INPUT_SHAPE = (1, 1, 28, 28)
 OUTPUT_NAME = "prob"
 OUTPUT_SIZE = 10
 DTYPE = trt.float32

In this example, the weights are imported from the Pytorch MNIST model.
weights = mnist_model.get_weights()

Create the logger, builder, and network classes.
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(TRT_LOGGER)
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(common.EXPLICIT_BATCH)

Refer to the Explicit vs Implicit Batch section for more information about the
kEXPLICIT_BATCH flag.

Next, create the input tensor for the network, specifying the name, datatype, and shape of the
tensor.
input_tensor = network.add_input(name=ModelData.INPUT_NAME, dtype=ModelData.DTYPE,
 shape=ModelData.INPUT_SHAPE)

Add a convolution layer, specifying the inputs, number of output maps, kernel shape, weights,
bias, and stride:
conv1_w = weights['conv1.weight'].numpy()
 conv1_b = weights['conv1.bias'].numpy()

https://github.com/NVIDIA/TensorRT/tree/main/samples/python/network_api_pytorch_mnist

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 27

 conv1 = network.add_convolution(input=input_tensor, num_output_maps=20, kernel_shape=(5,
 5), kernel=conv1_w, bias=conv1_b)
 conv1.stride = (1, 1)

Add a pooling layer, specifying the inputs (the output of the previous convolution layer), pooling
type, window size and stride:
pool1 = network.add_pooling(input=conv1.get_output(0), type=trt.PoolingType.MAX,
 window_size=(2, 2))
 pool1.stride = (2, 2)

Add the next pair of convolution and pooling layers:
 conv2_w = weights['conv2.weight'].numpy()
 conv2_b = weights['conv2.bias'].numpy()
 conv2 = network.add_convolution(pool1.get_output(0), 50, (5, 5), conv2_w, conv2_b)
 conv2.stride = (1, 1)

 pool2 = network.add_pooling(conv2.get_output(0), trt.PoolingType.MAX, (2, 2))
 pool2.stride = (2, 2)

Add a fully connected layer, specifying the inputs, number of outputs, kernel, and bias weights:
fc1_w = weights['fc1.weight'].numpy()
 fc1_b = weights['fc1.bias'].numpy()
 fc1 = network.add_fully_connected(input=pool2.get_output(0), num_outputs=500,
 kernel=fc1_w, bias=fc1_b)

Add a Relu activation layer:
 relu1 = network.add_activation(input=fc1.get_output(0), type=trt.ActivationType.RELU)

Add the final fully connected layer, and mark the output of this layer as the output of the entire
network:
fc2_w = weights['fc2.weight'].numpy()
 fc2_b = weights['fc2.bias'].numpy()
 fc2 = network.add_fully_connected(relu1.get_output(0), ModelData.OUTPUT_SIZE, fc2_w,
 fc2_b)

 fc2.get_output(0).name = ModelData.OUTPUT_NAME
 network.mark_output(tensor=fc2.get_output(0))

The network representing the MNIST model has now been fully constructed. Refer to sections
Building an Engine and Performing Inference for how to build an engine and run inference
with this network.

6.5. Reduced Precision

6.5.1. Network-level Control of Precision
By default, TensorRT works in 32-bit precision, but can also execute operations using 16-bit
floating point, and 8-bit quantized floating point. Using lower precision requires less memory
and enables faster computation.

Reduced precision support depends on your hardware (refer to the Hardware And Precision
section in the NVIDIA TensorRT Support Matrix). You can query the builder to check the
supported precision support on a platform:
C++

if (builder->platformHasFastFp16()) { … };

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#hardware-precision-matrix

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 28

Python
if builder.platform_has_fp16:

Setting flags in the builder configuration informs TensorRT that it may select lower-precision
implementations:
C++

config->setFlag(BuilderFlag::kFP16);

Python
config.set_flag(trt.BuilderFlag.FP16)

There are three precision flags: FP16, INT8, and TF32, and they may be enabled independently.
Note that TensorRT will still choose a higher-precision kernel if it results in overall lower
runtime, or if no low-precision implementation exists.

When TensorRT chooses a precision for a layer, it automatically converts weights as necessary
to run the layer.

sampleGoogleNet and sampleMNIST provide examples of using these flags.

While using FP16 and TF32 precisions is relatively straightforward, there is additional
complexity when working with INT8. Refer to the Working With INT8 chapter for more details.

6.5.2. Layer-level Control of Precision
The builder-flags provide permissive, coarse-grained control. However, sometimes part
of a network requires higher dynamic range or is sensitive to numerical precision. You can
constrain the input and output types per layer:

C++
layer->setPrecision(DataType::kFP16)

Python
layer.precision = trt.fp16

This provides a preferred type (here, DataType::kFP16) for the inputs and outputs.

You may further set preferred types for the layer’s outputs:
C++

layer->setOutputType(out_tensor_index, DataType::kFLOAT)

Python
layer.set_output_type(out_tensor_index, trt.fp16)

The computation will use the same floating-point type as is preferred for the inputs. Most
TensorRT implementations have the same floating-point types for input and output; however,
Convolution, Deconvolution, and FullyConnected can support quantized INT8 input and
unquantized FP16 or FP32 output, as sometimes working with higher-precision outputs from
quantized inputs is necessary to preserve accuracy.

Setting the precision constraint hints to TensorRT that it should select a layer implementation
whose inputs and outputs match the preferred types, inserting reformat operations if the
outputs of the previous layer and the inputs to the next layer do not match the requested types.
Note that TensorRT will only be able to select an implementation with these types if they are
also enabled via the flags in the builder configuration.

By default, TensorRT chooses such an implementation only if it results in a higher-
performance network. If another implementation is faster, TensorRT uses it and issues a

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleGoogleNet
https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleMNIST

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 29

warning. You can override this behavior by preferring the type constraints in the builder
configuration.
C++

config->setFlag(BuilderFlag::kPREFER_PRECISION_CONSTRAINTS)

Python
config.set_flag(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS)

If the constraints are preferred, TensorRT obeys them unless there is no implementation with
the preferred precision constraints, in which case it issues a warning and uses the fastest
available implementation.

To change the warning to an error, use OBEY instead of PREFER:
C++

config->setFlag(BuilderFlag::kOBEY_PRECISION_CONSTRAINTS);

Python
config.set_flag(trt.BuilderFlag.OBEY_PRECISION_CONSTRAINTS);

sampleINT8API illustrates the use of reduced precision with these APIs.

Precision constraints are optional - you can query to determine whether a constraint has been
set using layer->precisionIsSet() in C++ or layer.precision_is_set in Python. If a
precision constraint is not set, then the result returned from layer->getPrecision() in C+
+, or reading the precision attribute in Python, is not meaningful. Output type constraints are
similarly optional.

Note that there is a distinction between layer->getOutput(i)->setType() and layer-
>setOutputType()- the former is an optional type that constrains the implementation that
TensorRT will choose for a layer. The latter is mandatory (defaulting to FP32) and specifies
the type of a network output. If they are different, TensorRT will insert a cast to ensure that
both specifications are respected. Thus if you are calling setOutputType() for a layer that
produces a network output, you should in general also configure the corresponding network
output to have the same type.

6.5.3. Enabling TF32 Inference Using C++
TensorRT allows the use of TF32 Tensor Cores by default. When computing inner products,
such as during convolution or matrix multiplication, TF32 execution does the following:

‣ Rounds the FP32 multiplicands to FP16 precision but keeps the FP32 dynamic range.

‣ Computes an exact product of the rounded multiplicands.

‣ Accumulates the products in an FP32 sum.

TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy.
It is more robust than FP16 for models which require a high dynamic range for weights or
activations.

There is no guarantee that TF32 Tensor Cores are actually used, and there’s no way to force
the implementation to use them - TensorRT can fall back to FP32 at any time and always falls
back if the platform does not support TF32. However you can disable their use by clearing the
TF32 builder flag.
C++

config->clearFlag(BuilderFlag::kTF32);

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8API

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 30

Python
config.clear_flag(trt.BuilderFlag.TF32)

Setting the environment variable NVIDIA_TF32_OVERRIDE=0 when building an engine disables
the use of TF32, despite setting BuilderFlag::kTF32. This environment variable, when set
to 0, overrides any defaults or programmatic configuration of NVIDIA libraries, so they never
accelerate FP32 computations with TF32 Tensor Cores. This is meant to be a debugging
tool only, and no code outside NVIDIA libraries should change the behavior based on this
environment variable. Any other setting besides 0 is reserved for future use.

WARNING: Setting the environment variable NVIDIA_TF32_OVERRIDE to a different value
when the engine is run can cause unpredictable precision/performance effects. It is best left
unset when an engine is run.

Note: Unless your application requires the higher dynamic range provided by TF32, FP16 will
be a better solution since it almost always yields faster performance.

6.6. I/O Formats
TensorRT optimizes a network using many different data formats. In order to allow efficient
passing of data between TensorRT and a client application, these underlying data formats are
exposed at network I/O boundaries, i.e. for Tensors marked as network input or output, and
when passing data to and from plugins. For other tensors, TensorRT picks formats that result
in the fastest overall execution, and may insert reformats to improve performance.

You can assemble an optimal data pipeline by profiling the available I/O formats in
combination with the formats most efficient for the operations preceding and following
TensorRT.

To specify I/O formats, you specify one or more formats in the form of a bitmask.

The following example sets the input tensor format to TensorFormat::kHWC8. Note that this
format only works for DataType::kHALF, so the data type must be set accordingly.
C++

auto formats = 1U << TensorFormat::kHWC8;
network->getInput(0)->setAllowedFormats(formats);
network->getInput(0)->setType(DataType::kHALF);

Python
formats = 1 << int(tensorrt.TensorFormat.HWC8)
network.get_input(0).allowed_formats = formats
network.get_input(0).dtype = tensorrt.DataType.HALF

It is possible to make TensorRT avoid inserting reformatting at the network boundaries, by
setting the builder configuration flag DIRECT_IO. This flag is generally counter-productive for
two reasons:

‣ The resulting engine might be slower than if TensorRT had been allowed to insert
reformatting. Reformatting may sound like wasted work, but it can allow coupling of the
most efficient kernels.

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 31

‣ The build will fail if TensorRT cannot build an engine without introducing such
reformatting. The failure may happen only for some target platforms, because of what
formats are supported by kernels for those platforms.

The flag exists for the sake of users who want full control over whether reformatting happens
at I/O boundaries, such as to build engines that run solely on DLA without falling back to the
GPU for reformatting.

sampleIOFormats illustrates how to specify IO formats using C++.

The following table shows the supported formats.

Table 1. Supported I/O formats

Format kINT32 kFLOAT kHALF kINT8

kLINEAR Only for GPU Supported Supported Supported

kCHW2 N/A N/A Only for GPU N/A

kCHW4 N/A N/A Supported Supported

kHWC8 N/A N/A Only for GPU N/A

kCHW16 N/A N/A Supported N/A

kCHW32 N/A Only for GPU Only for GPU Supported

kDHWC8 N/A N/A Only for GPU N/A

kCDHW32 N/A N/A Only for GPU Only for GPU

kHWC N/A Only for GPU N/A N/A

kDLA_LINEAR N/A N/A Only for DLA Only for DLA

kDLA_HWC4 N/A N/A Only for DLA Only for DLA

kHWC16 N/A N/A Only for NVIDIA
Ampere GPUs and
later

N/A

Note that for the vectorized formats, the channel dimension must be zero-padded to the
multiple of the vector size. For example, if a input binding has dimensions of [16,3,224,224],
kHALF data type, and kHWC8 format, then the actual required size of the binding buffer would
be 16*8*224*224*sizeof(half) bytes, even though the engine->getBindingDimension()
API will return tensor dimensions as [16,3,224,224]. The values in the padded part (i.e.
where C=3,4,…,7 in this example) must be filled with zeros.

Refer to Data Format Descriptions for how the data are actually laid out in memory for these
formats.

6.7. Compatibility of Serialized Engines
Serialized engines are only guaranteed to work correctly when used with the same operating
systems, CPU architectures, GPU models, and TensorRT versions used to serialize the
engines.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleIOFormats

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 32

TensorRT checks the following attributes of the engine and will fail to deserialize if they do not
match the environment in which the engine was serialized:

‣ major, minor, patch, and build versions of TensorRT

‣ compute capability (major and minor versions)

This ensures that kernels selected during the build phase are present and can run. In addition,
the APIs that TensorRT uses to select and configure kernels from cuDNN and cuBLAS do not
support cross-device compatibility, so disable the use of these tactic sources in the builder
configuration.

TensorRT additionally checks the following properties and will issue a warning if they do not
match:

‣ Global memory bus width

‣ L2 cache size

‣ Maximum shared memory per block and per multiprocessor

‣ Texture alignment requirement

‣ Number of multiprocessors

‣ Whether the GPU device is integrated or discrete

If GPU clock speeds differ between engine serialization and runtime systems, the chosen
tactics from the serialization system may not be optimal for the runtime system and may incur
some performance degradation.

If the device memory available during deserialization is smaller than the amount during
serialization, deserialization may fail due to memory allocation failures.

When building small models on large devices, TensorRT may choose kernels which are less
efficient but scale better across the available resources. Thus if optimizing a single TensorRT
engine for use on multiple devices in the same architecture, the best approach is to run the
builder on the smallest device.

6.8. Explicit vs Implicit Batch
TensorRT supports two modes for specifying a network: explicit batch and implicit batch.

In implicit batch mode, every tensor has an implicit batch dimension and all other dimensions
must have constant length. This mode was used by early versions of TensoRT, and is now
deprecated but continues to be supported for backwards compatibility.

In explicit batch mode, all dimensions are explicit and can be dynamic, that is their length
can change at execution time. Many new features, such as dynamic shapes and loops, are
available only in this mode. It is also required by the ONNX parser.

For example, consider a network that processes N images of size HxW with 3 channels, in
NCHW format. At runtime, the input tensor has dimensions [N,3,H,W]. The two modes differ in
how the INetworkDefinition specifies the tensor's dimensions:

‣ In explicit batch mode, the network specifies [N,3,H,W].

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 33

‣ In implicit batch mode, the network specifies only [3,H,W]. The batch dimension N is
implicit.

Operations that "talk across a batch" are impossible to express in implicit batch mode
because there is no way to specify the batch dimension in the network. Examples of
inexpressible operations in implicit batch mode:

‣ reducing across the batch dimension

‣ reshaping the batch dimension

‣ transposing the batch dimension with another dimension

The exception is that a tensor can be broadcast across the entire batch, via method
ITensor::setBroadcastAcrossBatch for network inputs, and implicit broadcasting for other
tensors.

Explicit batch mode erases the limitations - the batch axis is axis 0. A more accurate term
for explicit batch would be "batch oblivious", because in this mode, TensorRT attaches no
special semantic meaning to the leading axis, except as required by specific operations.
Indeed in explicit batch mode there might not even be a batch dimension (such as a network
that handles only a single image) or there might be multiple batch dimensions of unrelated
lengths (such as comparison of all possible pairs drawn from two batches).

The choice of explicit vs. implicit batch must be specified when creating the
INetworkDefinition, via a flag. Here's the C++ code for explicit batch mode:
IBuilder* builder = ...;
INetworkDefinition* network = builder->createNetworkV2(1U <<
 static_cast<uint32_t>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)))

For implicit batch, use createNetwork or pass a 0 to createNetworkV2.

Here's the Python code for explicit batch mode:
builder = trt.Builder(...)
builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)

For implicit batch, omit the argument or pass a 0.

6.9. Sparsity
NVIDIA Ampere Architecture GPUs support Structured Sparsity. To make use of this feature
to achieve higher inference performance, the convolution kernel weights and/or the fully-
connected weights must meet the following requirements:

For each output channel and for each spatial pixel in the kernel weights, every 4 input
channels must have at least 2 zeros. In other words, assuming that the kernel weights have
the shape [K, C, R, S] and C % 4 == 0, then the requirement is:
for k in K:
 for r in R:
 for s in S:
 for c_packed in range(0, C // 4):
 num_zeros(weights[k, c_packed*4:(c_packed+1)*4, r, s]) >= 2

To enable the sparsity feature, set the kSPARSE_WEIGHTS flag in the builder config and make
sure that kFP16 and/or kINT8 modes are enabled. For example:

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 34

C++
config->setFlag(BuilderFlag::kSPARSE_WEIGHTS);

Python
config.set_flag(trt.BuilderFlag.SPARSE_WEIGHTS)

At the end of the TensorRT logs when the TensorRT engine is built, TensorRT reports which
layers contain weights that meet the structures sparsity requirement, and in which layers
TensorRT selects tactics that make use of the structured sparsity. In some cases, tactics
with structured sparsity can be slower than normal tactics and TensorRT will choose normal
tactics in these cases. The following output shows an example of TensorRT logs showing
information about sparsity:
[03/23/2021-00:14:05] [I] [TRT] (Sparsity) Layers eligible for sparse math: conv1, conv2,
 conv3
[03/23/2021-00:14:05] [I] [TRT] (Sparsity) TRT inference plan picked sparse implementation
 for layers: conv2, conv3

Forcing kernel weights to have structured sparsity patterns can lead to accuracy loss. To
recover lost accuracy with further fine-tuning, refer to the Automatic SParsity tool in PyTorch.

To measure inference performance with structured sparsity using trtexec, refer to the
trtexec section.

6.10. Empty Tensors
TensorRT supports empty tensors. A tensor is an empty tensor if it has one or more
dimensions with length zero. Zero-length dimensions usually get no special treatment. If a
rule works for a dimension of length L for an arbitrary positive value of L, it usually works for
L=0 too.

For example, when concatenating two tensors with dimensions [x,y,z] and [x,y,w] along the last
axis, the result has dimensions [x,y,z+w], regardless of whether x, y, z, or w is zero.

Implicit broadcast rules remain unchanged since only unit-length dimensions are special
for broadcast. For example, given two tensors with dimensions [1,y,z] and [x,1,z], their sum
computed by IElementWiseLayer has dimensions [x,y,z], regardless of whether x, y, or z is
zero.

If an engine binding is an empty tensor, it still needs a non-null memory address, and different
tensors should have different addresses.. This is consistent with the C++ rule that every
object has a unique address, for example, new float[0] returns a non-null pointer. If using
a memory allocator that might return a null pointer for zero bytes, ask for at least one byte
instead.

Refer to TensorRT Layers for any per-layer special handling of empty tensors.

6.11. Reusing Input Buffers
TensorRT also includes an optional CUDA event as an argument to the enqueue method
that is signaled once the input buffers are free to be reused. This allows the application
to immediately start refilling the input buffer region for the next inference in parallel with
finishing the current inference. For example:

https://github.com/NVIDIA/apex/tree/master/apex/contrib/sparsity

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 35

C++
context->enqueueV2(&buffers[0], stream, &inputReady);

Python
context.execute_async_v2(buffers, stream_ptr, inputReady)

6.12. Engine Inspector
TensorRT provides the IEngineInspector API to inspect the information inside a TensorRT
engine. Call the createEngineInspector() from a deserialized engine to create an engine
inspector, and then call getLayerInformation() or getEngineInformation() inspector
APIs to get the information of a specific layer in the engine or the entire engine, respectively.
You can print out the information of the first layer of the given engine, as well as the overall
information of the engine, as follows:

C++
auto inspector = std::unique_ptr<IEngineInspector>(engine->createEngineInspector());
inspector->setExecutionContext(context); // OPTIONAL
std::cout << inspector->getLayerInformation(0, LayerInformationFormat::kJSON); // Print
 the information of the first layer in the engine.
std::cout << inspector->getEngineInformation(LayerInformationFormat::kJSON); // Print the
 information of the entire engine.

Python
inspector = engine.create_engine_inspector();
inspector.execution_context = context; # OPTIONAL
print(inspector.get_layer_information(0, LayerInformationFormat.JSON); # Print the
 information of the first layer in the engine.
print(inspector.get_engine_information(LayerInformationFormat.JSON); # Print the
 information of the entire engine.

Note that the level of detail in the engine/layer information depends on the
ProfilingVerbosity builder config setting when the engine is built. By default,
ProfilingVerbosity is set to kLAYER_NAMES_ONLY, so only the layer names will be printed.
If ProfilingVerbosity is set to kNONE, then no information will be printed; if it is set to
kDETAILED, then detailed information will be printed.

Below are some examples of layer information printed by getLayerInformation() API
depending on the ProfilingVerbosity setting:
kLAYER_NAMES_ONLY

"node_of_gpu_0/res4_0_branch2a_1 + node_of_gpu_0/res4_0_branch2a_bn_1 + node_of_gpu_0/
res4_0_branch2a_bn_2"

kDETAILED
{
 "Name": "node_of_gpu_0/res4_0_branch2a_1 + node_of_gpu_0/res4_0_branch2a_bn_1 +
 node_of_gpu_0/res4_0_branch2a_bn_2",
 "LayerType": "CaskConvolution",
 "Inputs": [
 {
 "Name": "gpu_0/res3_3_branch2c_bn_3",
 "Dimensions": [16,512,28,28],
 "Format/Datatype": "Thirty-two wide channel vectorized row major Int8 format."
 }],
 "Outputs": [
 {
 "Name": "gpu_0/res4_0_branch2a_bn_2",
 "Dimensions": [16,256,28,28],
 "Format/Datatype": "Thirty-two wide channel vectorized row major Int8 format."
 }],

Advanced Topics

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 36

 "ParameterType": "Convolution",
 "Kernel": [1,1],
 "PaddingMode": "kEXPLICIT_ROUND_DOWN",
 "PrePadding": [0,0],
 "PostPadding": [0,0],
 "Stride": [1,1],
 "Dilation": [1,1],
 "OutMaps": 256,
 "Groups": 1,
 "Weights": {"Type": "Int8", "Count": 131072},
 "Bias": {"Type": "Float", "Count": 256},
 "AllowSparse": 0,
 "Activation": "RELU",
 "HasBias": 1,
 "HasReLU": 1,
 "TacticName":
 "sm80_xmma_fprop_implicit_gemm_interleaved_i8i8_i8i32_f32_nchw_vect_c_32kcrs_vect_c_32_nchw_vect_c_32_tilesize256x128x64_stage4_warpsize4x2x1_g1_tensor16x8x32_simple_t1r1s1_epifadd",
 "TacticValue": "0x11bde0e1d9f2f35d"
}

In addition, when the engine is built with dynamic shapes, the dynamic dimensions in
the engine information will be shown as -1 and the tensor format information will not
be shown because these fields depend on the actual shape at inference phase. To get
the engine information for a specific inference shape, create an IExecutionContext,
set all the input dimensions to the desired shapes, and then call inspector-
>setExecutionContext(context). After the context is set, the inspector will print the engine
information for the specific shape set in the context.

The trtexec tool provides the --profilingVerbosity, --dumpLayerInfo, and --
exportLayerInfo flags which can be used to get the engine information of a given engine.
Refer to the trtexec section for more details.

Currently, only binding information and layer information, including the dimensions of the
intermediate tensors, precisions, formats, tactic indices, layer types, and layer parameters,
are included in the engine information. More information may be added into the engine
inspector output as new keys in the output JSON object in future TensorRT versions. More
specifications about the keys and the fields in the inspector output will also be provided.

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 37

Chapter 7. Working With INT8

7.1. Introduction to Quantization
TensorRT supports the use of 8-bit integers to represent quantized floating point values. The
quantization scheme is symmetric uniform quantization - quantized values are represented
in signed INT8, and the transformation from quantized to unquantized values is simply a
multiplication. In the reverse direction, quantization uses the reciprocal scale, followed by
rounding and clamping.

To enable the use of any quantized operations, the INT8 flag must be set in the builder
configuration.

7.1.1. Quantization Workflows
There are two workflows for creating quantized networks:

Post-training quantization (PTQ) derives scale factors after the network has been trained.
TensorRT provides a workflow for PTQ, called calibration, where it measures the distribution of
activations within each activation tensor as the network executes on representative input data,
then uses that distribution to estimate a scale value for the tensor.

Quantization-aware training (QAT) computes scale factors during training. This allows the
training process to compensate for the effects of the quantization and dequantization
operations.

TensorRT’s Quantization Toolkit is a PyTorch library that helps produce QAT models that can
be optimized by TensorRT. You can also utilize the toolkit’s PTQ recipe to perform PTQ in
PyTorch and export to ONNX.

7.1.2. Explicit vs Implicit Quantization
Quantized networks can be represented in two ways:

In implicitly quantized networks, each quantized tensor has an associated scale. When reading
and writing the tensor, the scale is used to implicitly quantize and dequantize values.

When processing implicitly quantized networks, TensorRT treats the model as a floating-point
model when applying the graph optimizations, and uses INT8 opportunistically to optimize
layer execution time. If a layer runs faster in INT8, then it executes in INT8. Otherwise, FP32
or FP16 are used. In this mode, TensorRT is optimizing for performance only, and you have

https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization
朱文康
Highlight

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 38

little control over where INT8 is used - even if you explicitly set the precision of a layer at the
API level, TensorRT may fuse that layer with another during graph optimization, and lose the
information that it must execute in INT8. TensorRT’s PTQ capability generates an implicitly
quantized network.

In explicitly quantized networks, the scaling operations to transform between the quantized
and unquantized values are represented explicitly by IQuantizeLayer (C++, Python) and
IDequantizeLayer (C++, Python) nodes in the graph - these will henceforth be referred
to as Q/DQ nodes. By contrast with implicit quantization, the explicit form specifies exactly
where conversion to and from INT8 is performed, and the optimizer will perform only precision
conversions that are dictated by the semantics of the model, even if:

‣ adding extra conversions could increase layer precision (for example, choosing an FP16
kernel implementation over an INT8 implementation)

‣ adding extra conversions results in an engine that executes faster (for example, choosing
an INT8 kernel implementation to execute a layer specified as having float precision or vice
versa)

ONNX uses an explicitly quantized representation - when a model in PyTorch or TensorFlow
is exported to ONNX, each fake-quantization operation in the framework’s graph is exported
as Q followed by DQ. Since TensorRT preserves the semantics of these layers, you can expect
task accuracy very close to that seen in the framework. While optimizations preserve the
placement of quantization and dequantization, they may change the order of floating-point
operations in the model, so results will not be bitwise identical.

Note that by contrast with TensorRT’s PTQ, performing either QAT or PTQ in a framework and
then exporting to ONNX will result in an explicitly quantized model.

Table 2. Implicit vs Explicit Quantization

Implicit Quantization Explicit Quantization
User control over precision Little control: INT8 is used in all

kernels for which it accelerates
performance.

Full control over quantization/
dequantization boundaries.

Optimization criterion Optimize for performance. Optimize for performance while
maintaining arithmetic precision
(accuracy).

API ‣ Model + Scales (dynamic
range API)

‣ Model + Calibration data

Model with Q/DQ layers.

Quantization scales Weights:

‣ Set by TensorRT (internal)

‣ Range [-127, 127]

Activations:

‣ Set by calibration or
specified by the user

Weights and activations:

‣ Specified using Q/DQ ONNX
operators

‣ Range [-128, 127]

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_quantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iquantizelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_dequantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#idequantizelayer

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 39

Implicit Quantization Explicit Quantization
‣ Range [-128, 127]

For more background on quantization, refer to the Integer Quantization for Deep Learning
Inference: Principles and Empirical Evaluation paper.

7.1.3. Per-Tensor and Per-Channel Quantization
There are two common quantization scale granularities:

‣ Per-tensor quantization: in which a single scale value (scalar) is used to scale the entire
tensor.

‣ Per-channel quantization: in which a scale tensor is broadcast along the given axis - for
convolutional neural networks, this is typically the channel axis.

With explicit quantization, weights can be quantized using per-tensor quantization or they
can be quantized using per-channel quantization. In either case, the scale precision is FP32.
Activations can only be quantized using per-tensor quantization.

When using per-channel quantization, the axis of quantization must be the output-channel
axis. For example, when the weights of 2D convolution are described using KCRS notation, K is
the output-channel axis, and the weights quantization can be described as:
For each k in K:
 For each c in C:
 For each r in R:
 For each s in S:
 output[k,c,r,s] := clamp(round(input[k,c,r,s] / scale[k]))

The scale is a vector of coefficients and must have the same size as the quantization axis.
The quantization scale must consist of all positive float coefficients. The rounding method is
rounding-to-nearest ties-to-even and clamping is in the range [-128, 127].

Dequantization is performed similarly except for the pointwise operation which is defined as:
output[k,c,r,s] := input[k,c,r,s] * scale[k]

TensorRT supports only per-tensor quantization for activation tensors, but supports per-
channel weight quantization for convolution, deconvolution, fully connected layers, and MatMul
where the second input is constant and both input matrices are 2-dimensional.

7.2. Setting Dynamic Range
TensorRT provides APIs to set dynamic range (the range that must be represented by the
quantized tensor) directly, to support implicit quantization where these values have been
calculated outside TensorRT.

The API allows setting the dynamic range for a tensor using minimum and maximum
values. Since TensorRT currently supports only symmetric range, the scale is calculated
using max(abs(min_float), abs(max_float)). Note that when abs(min_float) !
= abs(max_float), TensorRT uses a larger dynamic-range than configured, which may
increase the rounding error.

https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 40

Dynamic range is needed for all floating-point inputs and outputs of an operation that will
execute in INT8.

You can set the dynamic range for a tensor as follows:
C++

tensor->setDynamicRange(min_float, max_float);

Python
tensor.dynamic_range = (min_float, max_float)

sampleINT8API illustrates the use of these APIs in C++.

7.3. Post-Training Quantization using
Calibration

In post-training quantization, TensorRT computes a scale value for each tensor in the network.
This process, called calibration, requires you to supply representative input data on which
TensorRT runs the network to collect statistics for each activation tensor.

The amount of input data required is application-dependent, but experiments indicate that
about 500 images are sufficient for calibrating ImageNet classification networks.

Given the statistics for an activation tensor, deciding on the best scale value is not an
exact science - it requires balancing two sources of error in the quantized representation:
discretization error (which increases as the range represented by each quantized value
becomes larger) and truncation error (where values are clamped to the limits of the
representable range.) Thus, TensorRT provides multiple different calibrators which calculate
the scale in different ways. Older calibrators also performed layer fusion for GPU to
optimize away unneeded Tensors before performing calibration. This can be problematic
when using DLA, where fusion patterns may be different, and can be overridden using the
kCALIBRATE_BEFORE_FUSION quantization flag.

IInt8EntropyCalibrator2
Entropy calibration chooses the tensor’s scale factor to optimize the quantized tensor’s
information-theoretic content, and usually suppresses outliers in the distribution. This
is the current and recommended entropy calibrator and is required for DLA. Calibration
happens before Layer fusion by default. It is recommended for CNN-based networks.

IInt8MinMaxCalibrator
This calibrator uses the entire range of the activation distribution to determine the scale
factor. It seems to work better for NLP tasks. Calibration happens before Layer fusion by
default. This is recommended for networks such as NVIDIA BERT (an optimized version of
Google's official implementation).

IInt8EntropyCalibrator
This is the original entropy calibrator. It is less complicated to use than the
LegacyCalibrator and typically produces better results. Calibration happens after Layer
fusion by default.

IInt8LegacyCalibrator
This calibrator is for compatibility with TensorRT 2.0 EA. This calibrator requires user
parameterization and is provided as a fallback option if the other calibrators yield poor
results. Calibration happens after Layer fusion by default. You can customize this calibrator

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8API
https://github.com/google-research/bert

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 41

to implement percentile max, for example, 99.99% percentile max is observed to have best
accuracy for NVIDIA BERT.

When building an INT8 engine, the builder performs the following steps:

 1. Build a 32-bit engine, run it on the calibration set, and record a histogram for each tensor
of the distribution of activation values.

 2. Build from the histograms a calibration table providing a scale value for each tensor.
 3. Build the INT8 engine from the calibration table and the network definition.

Calibration can be slow; therefore the output of step 2 (the calibration table) can be cached
and reused. This is useful when building the same network multiple times, for example, on
multiple platforms - in particular, it can simplify workflow to build the calibration table on a
machine with a discrete GPU and then reuse it on an embedded platform.

Before running calibration, TensorRT queries the calibrator implementation to see if it has
access to a cached table. If so, it proceeds directly to step 3 above. Cached data is passed as a
pointer and length.

The calibration cache data is portable between platforms and when building
engines for different devices as long as the calibration happens before
layer fusion. This means the calibration cache is portable when using the
IInt8EntropyCalibrator2 or IInt8MinMaxCalibrator calibrators by default, or when
QuantizationFlag::kCALIBRATE_BEFORE_FUSION is set. Fusions are not guaranteed to
be the same across platforms or devices, so calibrating after layer fusion may not result in a
portable calibration cache.

As well as quantizing activations, TensorRT must also quantize weights. It uses symmetric
quantization with a quantization scale calculated using the maximum absolute values found in
the weight tensor. For convolution, deconvolution and fully-connected weights, scales are per-
channel.

Note: When the builder is configured to use INT8 I/O, TensorRT still expects calibration data to
be in FP32. You can create FP32 calibration data by casting INT8 I/O calibration data to FP32
precision. You must also ensure that FP32 cast calibration data is in the range [-128.0F,
127.0F] and so can be converted to INT8 data without any precision loss.

INT8 calibration can be used along with the dynamic range APIs. Setting the dynamic range
manually overrides the dynamic range generated from INT8 calibration.

Note: Calibration is deterministic - that is, if you provide TensorRT with the same input to
calibration in the same order on the same device, the scales generated will be the same across
different runs. The data in the calibration cache will be bit-wise identical when generated using
the same device with the same batch size when provided with identical calibration inputs. The
exact data in the calibration cache is not guaranteed to be bit-wise identical when generated
using different devices, different batch sizes, or using different calibration inputs.

7.3.1. INT8 Calibration Using C++
To provide calibration data to TensorRT, implement the IInt8Calibrator interface.

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 42

About this task

The builder invokes the calibrator as follows:

‣ First, it queries the interface for the batch size and calls getBatchSize() to determine
the size of the input batch to expect.

‣ Then, it repeatedly calls getBatch() to obtain batches of input. Batches must be exactly
the batch size by getBatchSize(). When there are no more batches, getBatch() must
return false.

After you have implemented the calibrator, you can configure the builder to use it:
config->setInt8Calibrator(calibrator.get());

To cache the calibration table, implement the writeCalibrationCache() and
readCalibrationCache() methods.

For more information about configuring INT8 calibrator objects, see sampleINT8.

7.3.2. Calibration Using Python
The following steps illustrate how to create an INT8 calibrator object using the Python API.

Procedure

 1. Import TensorRT:
import tensorrt as trt

 2. Similar to test/validation datasets, use a set of input files as a calibration dataset.
Make sure the calibration files are representative of the overall inference data files.
For TensorRT to use the calibration files, you must create a batchstream object. A
batchstream object is used to configure the calibrator.
NUM_IMAGES_PER_BATCH = 5
batchstream = ImageBatchStream(NUM_IMAGES_PER_BATCH, calibration_files)

 3. Create an Int8_calibrator object with input nodes names and batch stream:
Int8_calibrator = EntropyCalibrator(["input_node_name"], batchstream)

 4. Set INT8 mode and INT8 calibrator:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = Int8_calibrator

7.4. Explicit Quantization
When TensorRT detects the presence of Q/DQ layers in a network, it builds an engine using
explicit-precision processing logic.

A Q/DQ network must be built with the INT8-precision builder flag enabled:
config->setFlag(BuilderFlag::kINT8);

In explicit-quantization, network changes of representation to and from INT8 are explicit,
therefore, INT8 must not be used as a type constraint.

https://github.com/NVIDIA/TensorRT/tree/main/samples/sampleINT8

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 43

7.4.1. Quantized Weights
Weights of Q/DQ models must be specified using FP32 data type. The weights are quantized by
TensorRT using the scale of the IQuantizeLayer that operates on the weights. The quantized
weights are stored in the Engine file. Pre-quantized weights can also be used but must be
specified using FP32 data-type. The scale of the Q node must be set to 1.0F, but the DQ node
must be the real scale value.

7.4.2. ONNX Support
When a model trained in PyTorch or TensorFlow using Quantization Aware Training (QAT) is
exported to ONNX, each fake-quantization operation in the framework’s graph is exported as a
pair of QuantizeLinearand DequantizeLinearONNX operators.

When TensorRT imports ONNX models, the ONNX QuantizeLinear operator is imported as
an IQuantizeLayer instance, and the ONNX DequantizeLinear operator is imported as an
IDequantizeLayer instance. ONNX using opset 10 introduced support for QuantizeLinear/
DequantizeLinear, and a quantization-axis attribute was added in opset 13 (required for per-
channel quantization). PyTorch 1.8 introduced support for exporting PyTorch models to ONNX
using opset 13.

WARNING: The ONNX GEMM operator is an example that can be quantized per channel.
PyTorch torch.nn.Linear layers are exported as an ONNX GEMM operator with (K, C)
weights layout and with the transB GEMM attribute enabled (this transposes the weights
before performing the GEMM operation). TensorFlow, on the other hand, pre-transposes the
weights (C, K) before ONNX export:

‣ PyTorch:

‣ TensorFlow:

PyTorch weights are therefore transposed by TensorRT. The weights are quantized by
TensorRT before they are transposed, so GEMM layers originating from ONNX QAT models
that were exported from PyTorch use dimension 0 for per-channel quantization (axis K = 0);
while models originating from TensorFlow use dimension 1 (axis K = 1).

TensorRT does not support pre-quantized ONNX models that use INT8 tensors or quantized
operators. Specifically, the following ONNX quantized operators are not supported and
generates an import error if they are encountered when TensorRT imports the ONNX model:

‣ QLinearConv/QLinearMatmul

‣ ConvInteger/MatmulInteger

7.4.3. TensorRT Processing Of Q/DQ Networks
When TensorRT optimizes a network in Q/DQ-mode, the optimization process is limited to
optimizations that do not change the arithmetic correctness of the network. Bit-level accuracy
is rarely possible since the order of floating-point operations can produce different results
(for example, rewriting as is a valid optimization). Allowing these

https://github.com/onnx/onnx/blob/master/docs/Operators.md#QuantizeLinear
https://github.com/onnx/onnx/blob/master/docs/Operators.md#dequantizelinear
https://github.com/onnx/onnx/blob/master/docs/Operators.md#QLinearConv
https://github.com/onnx/onnx/blob/master/docs/Operators.md#QLinearMatMul
https://github.com/onnx/onnx/blob/master/docs/Operators.md#ConvInteger
https://github.com/onnx/onnx/blob/master/docs/Operators.md#MatMulInteger

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 44

differences is fundamental to back-end optimization in general, and this also applies to
converting a graph with Q/DQ layers to use INT8 computation.

Q/DQ layers control the compute and data precision of a network. An IQuantizeLayer
instance converts an FP32 tensor to an INT8 tensor by employing quantization, and an
IDequantizeLayer instance converts an INT8 tensor to an FP32 tensor by means of
dequantization. TensorRT expects a Q/DQ layer pair on each of the inputs of quantizable-
layers. Quantizable-layers are deep-learning layers that can be converted to quantized layers
by fusing with IQuantizeLayer and IDequantizeLayer instances. When TensorRT performs
these fusions, it replaces the quantizable-layers with quantized layers that actually operate on
INT8 data using INT8 compute operations.

For the diagrams used in this chapter, green designates INT8 precision and blue designates
floating-point precision. Arrows represent network activation tensors and squares represent
network layers.

Figure 1. A quantizable AveragePool layer (in blue) is fused with a DQ
layer and a Q layer. All three layers are replaced by a quantized
AveragePool layer (in green).

During network optimization, TensorRT moves Q/DQ layers in a process called Q/DQ
propagation. The goal in propagation is to maximize the proportion of the graph that can
be processed at low precision. Thus, TensorRT propagates Q nodes backwards (so that
quantization happens as early as possible) and DQ nodes forward (so that dequantization
happens as late as possible). Q-layers can swap places with layers that commute-with-
Quantization and DQ-layers can swap places with layers that commute-with-Dequantization.

A layer commutes with quantization if

Similarly, a layer commutes with dequantization if

The following diagram illustrates DQ forward-propagation and Q backward-propagation.
These are legal rewrites of the model because Max Pooling has an INT8 implementation and
because Max Pooling commutes with DQ and with Q.

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 45

Figure 2. An illustration depicting a DQ forward-propagation and Q
backward-propagation.

Note:

To understand Max Pooling commutation, let’s look at the output of the maximum-pooling
operation applied to some arbitrary input. Max Pooling is applied to groups of input coefficients
and outputs the coefficient with the maximum value. For group i composed of coefficients:

:

It is therefore enough to look at two arbitrary coefficients without loss of generality (WLOG):

For quantization function , with
, note that (without providing proof, and using simplified notation):

Therefore:

However, by definition:

Function commutes-with-quantization and so does Max Pooling.

Similarly for dequantization, function with we can show
that:

There is a distinction between how quantizable-layers and commuting-layers are processed.
Both types of layers can compute in INT8, but quantizable-layers also fuse with DQ input
layers and a Q output layer. For example, an AveragePooling layer (quantizable) does not

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 46

commute with either Q or DQ, so it is quantized using Q/DQ fusion as illustrated in the first
diagram. This is in contrast to how Max Pooling (commuting) is quantized.

7.4.4. Q/DQ Layer-Placement Recommendations
The placement of Q/DQ layers in a network affects performance and accuracy. Aggressive
quantization can lead to degradation in model accuracy because of the error introduced
by quantization. But quantization also enables latency reductions. Listed here are some
recommendations for placing Q/DQ layers in your network.

Quantize all inputs of weighted-operations (Convolution, Transposed Convolution and GEMM).
Quantization of the weights and activations reduces bandwidth requirements and also enables
INT8 computation to accelerate bandwidth-limited and compute-limited layers.

Figure 3. Two examples of how TensorRT fuses convolutional layers. On
the left, only the inputs are quantized. On the right, both inputs
and output are quantized.

By default, don’t quantize the outputs of weighted-operations. It’s sometimes useful to
preserve the higher-precision dequantized output. For example, if the linear operation
is followed by an activation function (SiLU, in the following diagram) that requires higher
precision input to produce acceptable accuracy.

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 47

Figure 4. Example of a linear operation followed by an activation
function.

Don’t simulate batch-normalization and ReLU fusions in the training framework because
TensorRT optimizations guarantee to preserve the arithmetic semantics of these operations.

Figure 5. Batch normalization is fused with convolution and ReLU while
keeping the same execution order as defined in the pre-
fusion network. There is no need to simulate BN-folding in the
training network.

TensorRT can fuse element-wise addition following weighted layers, which is useful for
models with skip connections like ResNet and EfficientNet. The precision of the first input to
the element-wise addition layer determines the precision of the output of the fusion.

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 48

For example, in the following diagram, the precision of xf1 is floating-point, so the output of
the fused convolution is limited to floating-point, and the trailing Q-layer cannot be fused with
the convolution.

Figure 6. The precision of xf
1 is floating-point, so the output of the fused

convolution is limited to floating-point, and the trailing Q-layer
cannot be fused with the convolution.

In contrast, when xf1 is quantized to INT8, as depicted in the following diagram, the output of
the fused convolution is also INT8, and the trailing Q-layer is fused with the convolution.

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 49

Figure 7. When xf
1 is quantized to INT8, the output of the fused

convolution is also INT8, and the trailing Q-layer is fused with
the convolution.

For extra performance, try quantizing layers that do not commute with Q/DQ. Currently, non-
weighted layers that have INT8 inputs also require INT8 outputs, so quantize both inputs and
outputs.

Figure 8. An example of quantizing a quantizable operation. An element-
wise addition is fused with the input DQs and the output Q.

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 50

Performance can decrease if TensorRT cannot fuse the operations with the surrounding Q/
DQ layers, so be conservative when adding Q/DQ nodes and experiment with accuracy and
TensorRT performance in mind.

The following figure is an example of suboptimal fusions (the highlighted light green
background rectangles) that can result from extra Q/DQ operations. Contrast the following
figure with Figure 7, which shows a more performant configuration. The convolution is fused
separately from the element-wise addition because each of them is surrounded by Q/DQ pairs.
The fusion of the element-wise addition is shown in Figure 8.

Figure 9. An example of suboptimal quantization fusions: contrast the
suboptimal fusion in A and the optimal fusion in B. The extra
pair of Q/DQ operations (highlighted with a glowing-green
border) forces the separation of the convolution from the
element-wise addition.

Use per-tensor quantization for activations; and per-channel quantization for weights.This
configuration has been demonstrated empirically to lead to the best quantization accuracy.

You can further optimize engine latency by enabling FP16. TensorRT attempts to use FP16
instead of FP32 whenever possible (this is not currently supported for all layer types).

7.4.5. Q/DQ Limitations
A few of the Q/DQ graph-rewrite optimizations that TensorRT performs compare the values
of quantization scales between two or more Q/DQ layers and only perform the graph-rewrite
if the compared quantization scales are equal. When a refittable TensorRT engine is refitted,
the scales of Q/DQ nodes can be assigned new values. During the refitting operation of Q/DQ
engines, TensorRT checks if Q/DQ layers that participated in scale-dependent optimizations
are assigned new values that break the rewrite optimizations and throws an exception if true.

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 51

Figure 10. An example showing scales of Q1 and Q2 are compared for
equality, and if equal, they are allowed to propagate backward. If
the engine is refitted with new values for Q1 and Q2 such that Q1 !
= Q2, then an exception aborts the refitting process.

7.4.6. QAT Networks Using TensorFlow
TensorFlow QAT models place Q/DQ on the outputs of weighted-operations (in contrast with
the TensorRT Quantization Toolkit for PyTorch) and can produce suboptimal models. TensorRT
is not validated on TensorFlow and can show a lower quality of service.

As TensorRT only supports symmetric quantization for both activations and weights, a training
graph must be created using symmetric=True.

Tensorflow 1.15 supports Quantization Aware Training (QAT) for creating symmetrically
quantized models using tf.contrib.quantize.experimental_create_training_graph API. By
default, the TensorFlow training graph would create per-tensor weights and activation
dynamic range, meaning (min, max). To generate per-channel dynamic range for weights, the
QAT scripts would need to be updated.

After QAT, you can create a frozen inference graph using the following commands. (This
example uses TensorFlow models repo for training and creating an inference graph.)
python models/research/slim/export_inference_graph.py \
 --model_name<model> \
 --output_file=quantized_symm_eval.pb \
 --quantize \
 --symmetric

Freeze the graph with checkpoints:
python tensorflow/tensorflow/python/tools/freeze_graph.py \
 --input_graph=eval.pb \
 --input_checkpoint=model.ckpt-0000 \
 --input_binary=true \
 --output_graph=quantized_symm_frozen.pb \
 --output_node_names=<OutputNode>

https://github.com/tensorflow/tensorflow/tree/r1.15/tensorflow/contrib/quantize
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/quantize/experimental_create_training_graph
https://github.com/tensorflow/tensorflow/blob/r1.15/tensorflow/contrib/quantize/python/quant_ops.py
https://github.com/tensorflow/models

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 52

7.4.6.1. Converting TensorFlow To ONNX Quantized Models
We recommend using the tf.quantization.quantize_and_dequantize_v2 operator
to perform QAT in TensorFlow since it uses symmetric quantization which is consistent
with TensorRT’s quantization scheme. The quantize_and_dequantize_v2 node can be
converted to sequence of QuantizeLinear and DequantizeLinear nodes (Q/DQ nodes) by using
the TF2ONNX converter.

Dynamic range with, meaning [min, max], values are converted to scale and zero-point,
where scale = max(abs(min, max))/127 and zero_point = 0.

You can use the tf2onnx converter to convert a quantized frozen model to a quantized ONNX
model.
python -m tf2onnx.convert \
--input quantized_symm_frozen.pb \
--output quantized.onnx \
--inputs <InputNode> \
--outputs <OutputNode> \
--opset 10 \
--fold_const \
--inputs-as-nchw <InputNode>

7.4.6.1.1. TF1
In TF1, you can use the tf2onnx converter to convert a quantized frozen model to a quantized
ONNX model.
python -m tf2onnx.convert \
--input quantized_symm_frozen.pb \
--output quantized.onnx \
--inputs <InputNode> \
--outputs <OutputNode> \
--opset 13 \
--fold_const \
--inputs-as-nchw <InputNode>

7.4.7. QAT Networks Using PyTorch
PyTorch 1.8.0 and forward support ONNX QuantizeLinear/DequantizeLinear which support
per channel scales. You can use pytorch-quantization to do INT8 calibration, run quantization
aware fine-tuning, generate ONNX and finally use TensorRT to run inference on this ONNX
model. More detail can be found in PyTorch-Quantization Toolkit User Guide.

7.5. INT8 Rounding Modes
Weights Quantization (FP32 to INT8)

Backend

Compute Kernel
Quantization (FP32 to
INT8)

Quantized Network
(QAT)

Dynamic Range API /
Calibration

GPU round-to-nearest-
with-ties-to-even

round-to-nearest-
with-ties-to-even

round-to-nearest-
with-ties-to-
positive-infinity

https://github.com/jhalakpatel/tensorflow-onnx/tree/fake_quant_ops_rewriter
https://github.com/onnx/tensorflow-onnx
https://github.com/onnx/onnx/blob/master/docs/Operators.md#QuantizeLinear
https://github.com/onnx/onnx/blob/master/docs/Operators.md#dequantizelinear
https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization
https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/index.html

Working With INT8

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 53

Weights Quantization (FP32 to INT8)

Backend

Compute Kernel
Quantization (FP32 to
INT8)

Quantized Network
(QAT)

Dynamic Range API /
Calibration

DLA round-to-nearest-
with-ties-away-
from-zero

N/A round-to-nearest-
with-ties-away-
from-zero

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 54

Chapter 8. Working With Dynamic
Shapes

Dynamic Shapes is the ability to defer specifying some or all tensor dimensions until runtime.
Dynamic shapes can be used via both the C++ and Python interfaces.

The following sections provide greater detail; however, here’s an overview of the steps for
building an engine with dynamic shapes:

 1. The network definition must not have an implicit batch dimension.
C++

Create the INetworkDefinition by calling
IBuilder::createNetworkV2(1U <<
 static_cast<int>(NetworkDefinitionCreationFlag::kEXPLICIT_BATCH))

Python
Create the tensorrt.INetworkDefinition by calling
create_network(1 <<
 int(tensorrt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

These calls request that the network not have an implicit batch dimension.
 2. Specify each runtime dimension of an input tensor by using -1 as a placeholder for the

dimension.
 3. Specify one or more optimization profiles at build time that specify the permitted range of

dimensions for inputs with runtime dimensions, and the dimensions for which the auto-
tuner will optimize. For more information, refer to Optimization Profiles.

 4. To use the engine:

 a). Create an execution context from the engine, the same as without dynamic shapes.
 b). Specify one of the optimization profiles from step 3 that covers the input dimensions.
 c). Specify the input dimensions for the execution context. After setting input dimensions,

you can get the output dimensions that TensorRT computes for the given input
dimensions.

 d). Enqueue work.

To change the runtime dimensions, repeat steps 4b and 4c, which do not have to be repeated
until the input dimensions change.

Working With Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 55

8.1. Specifying Runtime Dimensions
When building a network, use -1 to denote a runtime dimension for an input tensor. For
example, to create a 3D input tensor named foo where the last two dimensions are specified
at runtime, and the first dimension is fixed at build time, issue the following.

C++
networkDefinition.addInput("foo", DataType::kFLOAT, Dims3(3, -1, -1))

Python
network_definition.add_input("foo", trt.float32, (3, -1, -1))

At run time, you’ll need to set the input dimensions after choosing an optimization profile
(refer to Optimization Profiles). Let the bindingIndex of input foo be 0, and the input have
dimensions [3,150,250]. After setting an optimization profile for the previous example, you
would call:
C++

context.setBindingDimensions(0, Dims3(3, 150, 250))

Python
context.set_binding_shape(0, (3, 150, 250))

At runtime, asking the engine for binding dimensions returns the same dimensions used to
build the network, meaning, you get a -1 for each runtime dimension. For example:
C++

engine.getBindingDimensions(0) returns a Dims with dimensions {3, -1, -1}.
Python

engine.get_binding_shape(0) returns (3, -1, -1).

To get the actual dimensions, which are specific to each execution context, query the execution
context:
C++

context.getBindingDimensions(0) returns a Dims with dimensions {3, 150, 250}.
Python

context.get_binding_shape(0) returns (3, 150, 250).

Note: The return value of setBindingDimensions for an input only indicates consistency with
respect to the optimization profile set for that input. After all input binding dimensions are
specified, you can check whether the entire network is consistent with respect to the dynamic
input shapes by querying the dimensions of the output bindings of the network.
nvinfer1::Dims out_dim = context->getBindingDimensions(out_index);

if (out_dim.nbDims == -1) {
gLogError << "Invalid network output, this might be caused by inconsistent input
 shapes." << std::endl;
// abort inference
}

Working With Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 56

8.2. Optimization Profiles
An optimization profile describes a range of dimensions for each network input and the
dimensions that the auto-tuner will use for optimization. When using runtime dimensions, you
must create at least one optimization profile at build time. Two profiles can specify disjoint or
overlapping ranges.

For example, one profile might specify a minimum size of [3,100,200], a maximum
size of [3,200,300], and optimization dimensions of [3,150,250] while another profile
might specify min, max and optimization dimensions of [3,200,100], [3,300,400], and
[3,250,250].

To create an optimization profile, first construct an IOptimizationProfile. Then set the
min, optimization, and max dimensions, and add it to the network configuration. The shapes
defined by the optimization profile must define valid input shapes for the network. Here are the
calls for the first profile mentioned previously for an input foo:
C++

IOptimizationProfile* profile = builder.createOptimizationProfile();
profile->setDimensions("foo", OptProfileSelector::kMIN, Dims3(3,100,200);
profile->setDimensions("foo", OptProfileSelector::kOPT, Dims3(3,150,250);
profile->setDimensions("foo", OptProfileSelector::kMAX, Dims3(3,200,300);

config->addOptimizationProfile(profile)

Python
profile = builder.create_optimization_profile();
profile.set_shape("foo", (3, 100, 200), (3, 150, 250), (3, 200, 300))
config.add_optimization_profile(profile)

At runtime, you need to set an optimization profile before setting input dimensions. Profiles
are numbered in the order they were added, starting at 0. Note that each execution context
must use a separate optimization profile.

To choose the first optimization profile in the example, use:
C++

call context.setOptimizationProfileAsync(0, stream)

where stream is the CUDA stream that is used for the subsequent enqueue() or
enqueueV2() invocation in this context.

Python
set context.set_optimization_profile_async(0, stream)

If the associated CUDA engine has dynamic inputs, the optimization profile must be set at
least once with a unique profile index that is not used by other execution contexts that are
not destroyed. For the first execution context that is created for an engine, profile 0 is chosen
implicitly.

setOptimizationProfileAsync() can be called to switch between profiles. It must be called
after any enqueue() or enqueueV2() operations finish in the current context. When multiple
execution contexts run concurrently, it is allowed to switch to a profile that was formerly used
but already released by another execution context with different dynamic input dimensions.

setOptimizationProfileAsync() function replaces the now deprecated version of
the API setOptimizationProfile(). Using setOptimizationProfile() to switch

Working With Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 57

between optimization profiles can cause GPU memory copy operations in the subsequent
enqueue() or enqueueV2() operations operation. To avoid these calls during enqueue, use
setOptimizationProfileAsync() API instead.

In an engine built from multiple profiles, there are separate binding indices for each profile.
The names of input/output tensors for the Kth profile have [profile K] appended to
them, with K written in decimal. For example, if the INetworkDefinition had the name
“foo“, and bindingIndex refers to that tensor in the optimization profile with index 3,
engine.getBindingName(bindingIndex) returns “foo [profile 3]“.

Likewise, if using ICudaEngine::getBindingIndex(name) to get the index for a
profile K beyond the first profile (K=0), append “[profile K]“ to the name used
in the INetworkDefinition. For example, if the tensor was called “foo“ in the
INetworkDefinition, then engine.getBindingIndex(“foo [profile 3]“) returns the
binding index of Tensor “foo" in optimization profile 3.

Always omit the suffix for K=0.

8.2.1. Bindings For Multiple Optimization Profiles
Consider a network with four inputs, one output, with three optimization profiles in the
IBuilderConfig. The engine has 15 bindings, five for each optimization profile, conceptually
organized as a table:

Figure 11. Optimization profile

Each row is a profile. Numbers in the table denote binding indices. The first profile has binding
indices 0..4, the second has 5..9, and the third has 10..14.

The interfaces have an “auto-correct” for the case that the binding belongs to the first profile,
but another profile was specified. In that case, TensorRT warns about the mistake and then
chooses the correct binding index from the same column.

For the sake of backward semi-compatibility, the interfaces have an “auto-correct” in the
scenario where the binding belongs to the first profile, but another profile was specified. In this
case, TensorRT warns about the mistake and then chooses the correct binding index from the
same column.

Working With Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 58

8.3. Layer Extensions For Dynamic
Shapes

Some layers have optional inputs that allow specifying dynamic shape information, and there
is a new layer IShapeLayer for accessing the shape of a tensor at runtime. Furthermore,
some layers allow calculating new shapes. The next section goes into semantic details and
restrictions. Here is a summary of what you might find useful in conjunction with dynamic
shapes.

IShapeLayer outputs a 1D tensor containing the dimensions of the input tensor. For example,
if the input tensor has dimensions [2,3,5,7], the output tensor is a four-element 1D tensor
containing {2,3,5,7}. If the input tensor is a scalar, it has dimensions [], and the output
tensor is a zero-element 1D tensor containing {}.

IResizeLayer accepts an optional second input containing the desired dimensions of the
output.

IShuffleLayer accepts an optional second input containing the reshape dimensions before
the second transpose is applied. For example, the following network reshapes a tensor Y to
have the same dimensions as X:
C++

 auto* reshape = networkDefinition.addShuffle(Y);
 reshape.setInput(1, networkDefintion.addShape(X)->getOutput(0));

Python
 reshape = network_definition.add_shuffle(y)
 reshape.set_input(1, network_definition.add_shape(X).get_output(0))

ISliceLayer accepts an optional second, third, and fourth inputs containing the start, size,
and stride.
IConcatenationLayer, IElementWiseLayer, IGatherLayer, IIdentityLayer, and
 IReduceLayer
can be used to do calculations on shapes and create new shape tensors.

8.4. Restrictions For Dynamic Shapes
The following layer restrictions arise because the layer’s weights have a fixed size:

‣ IConvolutionLayer and IDeconvolutionLayer require that the channel dimension be a
build-time constant.

‣ IFullyConnectedLayer requires that the last three dimensions be build-time constants.

‣ Int8 requires that the channel dimension be a build-time constant.

‣ Layers accepting additional shape inputs (IResizeLayer, IShuffleLayer, ISliceLayer)
require that the additional shape inputs be compatible with the dimensions of the
minimum and maximum optimization profiles as well as with the dimensions of the
runtime data input; otherwise, it can lead to either a build-time or runtime error.

Working With Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 59

Values that must be build-time constants don’t have to be constants at the API level.
TensorRT’s shape analyzer does element-by-element constant propagation through layers
that do shape calculations. It’s sufficient that the constant propagation discovers that a value
is a build-time constant.

8.5. Execution Tensors vs. Shape Tensors
Engines using dynamic shapes employ a two-phase execution strategy.

 1. Compute the shapes of all tensors
 2. Stream work to the GPU.

Phase 1 is implicit and driven by demand, such as when output dimensions are requested.
Phase 2 is the same as in prior versions of TensorRT. The two-phase execution puts some
limits on dynamism that are important to understand.

The key limits are:

‣ The rank of a tensor must be determinable at build time.

‣ A tensor is either an execution tensor, shape tensor, or both. Tensors classified as shape
tensors are subject to limits.

An execution tensor is a traditional TensorRT tensor. A shape tensor is a tensor that is related
to shape calculations. It must be 0D or 1D, have type Int32, Float, or Bool, and its shape
must be determinable at build time. For example, there is an IShapeLayer whose output
is a 1D tensor containing the dimensions of the input tensor. The output is a shape tensor.
IShuffleLayer accepts an optional second input that can specify reshaping dimensions. The
second input must be a shape tensor.

Some layers are “polymorphic” with respect to the kinds of tensors they handle. For example,
IElementWiseLayer can sum two INT32 execution tensors or sum two INT32 shape tensors.
The type of tensor depends on its ultimate use. If the sum is used to reshape another tensor,
then it is a “shape tensor.”

8.5.1. Formal Inference Rules
The formal inference rules used by TensorRT for classifying tensors are based on a type-
inference algebra. Let E denote an execution tensor and S denote a shape tensor.

IActivationLayer has the signature:
IActivationLayer: E → E

since it takes an execution tensor as an input and an execution tensor as an output.
IElementWiseLayer is polymorphic in this respect, with two signatures:
IElementWiseLayer: S × S → S, E × E → E

For brevity, let’s adopt the convention that tis a variable denoting either class of tensor, and
all tin a signature refers to the same class of tensor. Then, the two previous signatures can be
written as a single polymorphic signature:
IElementWiseLayer: t × t → t

The two-input IShuffleLayer has a shape tensor as the second input and is polymorphic with
respect to the first input:

Working With Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 60

IShuffleLayer (two inputs): t × S → t

IConstantLayer has no inputs, but can produce a tensor of either kind, so its signature is:
IConstantLayer: → t

The signature for IShapeLayer allows all four possible combinations E→E, E→S, S→E, and S→S,
so it can be written with two independent variables:
IShapeLayer: t1 → t2

Here is the complete set of rules, which also serves as a reference for which layers can be
used to manipulate shape tensors:
IAssertionLayer: S →
IConcatenationLayer: t × t × ...→ t
IIfConditionalInputLayer: t → t
IIfConditionalOutputLayer: t → t
IConstantLayer: → t
IActivationLayer: t → t
IElementWiseLayer: t × t → t
IFillLayer: S → t
IFillLayer: S × E × E → E
IGatherLayer: t × t → t
IIdentityLayer: t → t
IReduceLayer: t → t
IResizeLayer (one input): E → E
IResizeLayer (two inputs): E × S → E
ISelectLayer: t × t × t → t
IShapeLayer: t1 → t2
IShuffleLayer (one input): t → t
IShuffleLayer (two inputs): t × S → t
ISliceLayer (one input): t → t
ISliceLayer (two inputs): t × S → t
ISliceLayer (three inputs): t × S × S → t
ISliceLayer (four inputs): t × S × S × S → t
IUnaryLayer: t → t
all other layers: E × ... → E × ...

Because an output can be the input of more than one subsequent layer, the inferred
“types” are not exclusive. For example, an IConstantLayer might feed into one use that
requires an execution tensor and another use that requires a shape tensor. The output of
IConstantLayer is classified as both and can be used in both phase 1 and phase 2 of the two-
phase execution.

The requirement that the rank of a shape tensor be known at build time limits how
ISliceLayer can be used to manipulate a shape tensor. Specifically, if the third parameter,
which specifies the size of the result, is not a build-time constant, the length of the resulting
shape tensor would no longer be known at build time, breaking the restriction of shape
tensors to build-time shapes. Worse, it might be used to reshape another tensor, breaking the
restriction that tensor ranks must be known at build time.

TensorRT’s inferences can be inspected via methods ITensor::isShapeTensor(), which
returns true for a shape tensor, and ITensor::isExecutionTensor(), which returns true for
an execution tensor. Build the entire network first before calling these methods because their
answer can change depending on what uses of the tensor have been added.

For example, if a partially built network sums two tensors, T1 and T2, to create tensor T3, and
none are yet needed as shape tensors, isShapeTensor() returns false for all three tensors.
Setting the second input of IShuffleLayer to T3 would cause all three tensors to become
shape tensors because IShuffleLayer requires that its second optional input be a shape
tensor, and if the output of IElementWiseLayer is a shape tensor, its inputs are too.

Working With Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 61

8.6. Shape Tensor I/O (Advanced)
Sometimes the need arises to use a shape tensor as a network I/O tensor. For example,
consider a network consisting solely of an IShuffleLayer. TensorRT infers that the second
input is a shape tensor. ITensor::isShapeTensor returns true for it. Because it is an input
shape tensor, TensorRT requires two things for it:

‣ At build time: the optimization profile values of the shape tensor.

‣ At run time: the values of the shape tensor.

The shape of an input shape tensor is always known at build time. It’s the values that need to
be described since they can be used to specify the dimensions of execution tensors.

The optimization profile values can be set using IOptimizationProfile::setShapeValues.
Analogous to how min, max, and optimization dimensions must be supplied for execution
tensors with runtime dimensions, min, max and optimization values must be provided for
shape tensors at build time.

The corresponding runtime method is IExecutionContext::setInputShapeBinding, which
sets the values of the shape tensor at runtime.

Because the inference of “execution tensor” vs “shape tensor” is based on ultimate use,
TensorRT cannot infer whether a network output is a shape tensor. You must to tell it via the
method INetworkDefinition::markOutputForShapes.

Besides letting you output shape information for debugging, this feature is useful for
composing engines. For example, consider building three engines, one each for sub-
networks A, B, C, where a connection from A to B or B to C might involve a shape tensor.
Build the networks in reverse order: C, B, and A. After constructing network C, you
can use ITensor::isShapeTensor to determine if an input is a shape tensor, and use
INetworkDefinition::markOutputForShapes to mark the corresponding output tensor
in network B. Then check which inputs of B are shape tensors and mark the corresponding
output tensor in network A.

Shape tensors at network boundaries must have type Int32. They cannot have type Float or
Bool. A workaround for Bool is to use Int32 for the I/O tensor, with zeros and ones, and:

‣ Convert to Bool via ElementWiseOperation::kGREATER, i.e. x > 0.

‣ Convert from Bool via ISelectLayer, i.e. y ? 1 : 0.

8.7. INT8 Calibration With Dynamic
Shapes

To run INT8 calibration for a network with dynamic shapes, a calibration optimization profile
must be set. Calibration is performed using kOPT values of the profile. Calibration input data
size must match this profile.

Working With Dynamic Shapes

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 62

To create a calibration optimization profile, first, construct an IOptimizationProfile
the same way as it is done for a general optimization profile. Then set the profile to the
configuration:
C++

config->setCalibrationProfile(profile)

Python
config.set_calibration_profile(profile)

The calibration profile must be valid or be nullptr. kMIN and kMAX
values are overwritten by kOPT. To check the current calibration profile,
useIBuilderConfig::getCalibrationProfile.

This method returns a pointer to the current calibration profile or nullptr if the calibration
profile is unset. getBatchSize() calibrator method must return 1 when running calibration
for a network with dynamic shapes.

Note: If the calibration optimization profile is not set, the first network optimization profile is
used as a calibration optimization profile.

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 63

Chapter 9. Extending TensorRT With
Custom Layers

NVIDIA TensorRT supports many types of layers and its functionality is continually extended;
however, there can be cases in which the layers supported do not cater to the specific needs of
a model.

You can extend TensorRT by implementing custom layers, often referred to as plugins.

9.1. Adding Custom Layers Using The C++
API

You can implement a custom layer by deriving from one of TensorRT’s plugin base classes.

Table 3. Base classes, ordered from least expressive to most expressive

Introduced
in TensorRT
version?

Mixed input/
output formats/
types

Dynamic
shapes?

Supports
implicit/explicit
batch mode?

IPluginV2Ext 5.1 Limited No Implicit batch
mode only

IPluginV2IOExt 6.0.1 General No Implicit batch
mode only

IPluginV2DynamicExt6.0.1 General Yes Explicit batch
mode only

In order to use a plugin in a network, you must first register it with TensorRT’s
PluginRegistry (C++, Python). Rather than registering the plugin directly, you register an
instance of a factory class for the plugin, derived from PluginCreator (C++, Python). The
plugin creator class also provides other information about the plugin: its name, version, and
plugin field parameters.

You must derive your plugin class from one of the base classes for plugins. They have varying
expressive power with respect to supporting inputs/outputs with different types/formats or

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_i_o_ext.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_dynamic_ext.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin_registry.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginRegistry.html
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_plugin_creator.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Plugin/IPluginCreator.html

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 64

networks with dynamic shapes. The following table summarizes the base classes, ordered
from least expressive to most expressive.

Note: If a plugin is intended for general use, provide an FP32 implementation in order to allow
it to properly operate with any network.

TensorRT provides a macro REGISTER_TENSORRT_PLUGIN that statically registers the plugin
creator with the registry.

TensorRT library contains plugins that can be loaded into your application. For a list of open-
sourced plugins, refer to GitHub: TensorRT plugins.

Note:

‣ To use TensorRT plugins in your application, the libnvinfer_plugin.so library must be
loaded, and all plugins must be registered by calling initLibNvInferPlugins in your
application code.

‣ If you have your own plugin library, you can include a similar entry point to register all
plugins in the registry under a unique namespace. This ensures there are no plugin name
collisions during build time across different plugin libraries.

For more information about these plugins, refer to the NvInferPlugin.h file for reference.

Calling IPluginCreator::createPlugin() returns a plugin object of type IPluginV2. You
can add a plugin to the TensorRT network using addPluginV2() which creates a network
layer with the given plugin.

For example, you can add a plugin layer to your network as follows:
// Look up the plugin in the registry
auto creator = getPluginRegistry()->getPluginCreator(pluginName, pluginVersion);
const PluginFieldCollection* pluginFC = creator->getFieldNames();
//populate the fields parameters for the plugin layer
PluginFieldCollection *pluginData = parseAndFillFields(pluginFC, layerFields);
//create the plugin object using the layerName and the plugin meta data
IPluginV2 *pluginObj = creator->createPlugin(layerName, pluginData);
//add the plugin to the TensorRT network
auto layer = network.addPluginV2(&inputs[0], int(inputs.size()), pluginObj);
… (build rest of the network and serialize engine)
pluginObj->destroy() // Destroy the plugin object
… (destroy network, engine, builder)
… (free allocated pluginData)

Note:

‣ pluginData must allocate the PluginField entries on the heap before passing to
createPlugin.

‣ The createPlugin method described previously creates a new plugin object on the heap
and returns a pointer to it. Ensure you destroy the pluginObj, as shown previously, to
avoid a memory leak.

During serialization, the TensorRT engine internally stores the plugin type, plugin
version, and namespace (if it exists) for all IPluginV2 type plugins. During
deserialization, TensorRT looks up the Plugin Creator from the Plugin Registry and calls
IPluginCreator::deserializePlugin(). The plugin object created during deserialization is
destroyed internally by the TensorRT engine by calling IPluginV2::destroy() method.

https://github.com/NVIDIA/TensorRT/tree/main/plugin#tensorrt-plugins
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/_nv_infer_plugin_8h.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_network_definition.html#a0c6e2a0b4e1c8a4df1722a24cc7c0473

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 65

During serialization, the TensorRT engine internally stores the plugin type, plugin
version, and namespace (if it exists) for all IPluginV2 type plugins. During
deserialization, TensorRT looks up the Plugin Creator from the Plugin Registry and calls
IPluginCreator::deserializePlugin(). The plugin object created during deserialization is
destroyed internally by the TensorRT engine by calling the IPluginV2::destroy() method.

9.1.1. Example: Adding A Custom Layer With
Dynamic Shape Support Using C++

To support dynamic shapes, your plugin must be derived from IPluginV2DynamicExt.

About this task

BarPlugin is a plugin with two inputs and two outputs where:

‣ The first output is a copy of the second input

‣ The second output is the concatenation of both inputs, along the first dimension, and all
types/formats must be the same and be linear formats

BarPlugin needs to be derived as follows:
class BarPlugin : public IPluginV2DynamicExt
{
 ...override virtual methods inherited from IPluginV2DynamicExt.
};

The inherited methods are all pure virtual methods, so the compiler reminds you if you forget
one.

The four methods that are affected by dynamic shapes are:

‣ getOutputDimensions

‣ supportsFormatCombination

‣ configurePlugin

‣ enqueue

The override for getOutputDimensions returns symbolic expressions for the output
dimensions in terms of the input dimensions. You can build the expressions from the
expressions for the inputs, using the IExprBuilder passed into getOutputDimensions.
In the example, no new expression has to be built for case 1 because the dimensions of the
second output are the same as the dimensions of the first input.
DimsExprs BarPlugin::getOutputDimensions(int outputIndex,
 const DimsExprs* inputs, int nbInputs,
 IExprBuilder& exprBuilder)
{
 switch (outputIndex)
 {
 case 0:
 {
 // First dimension of output is sum of input
 // first dimensions.
 DimsExprs output(inputs[0]);
 output.d[0] =
 exprBuilder.operation(DimensionOperation::kSUM,

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 66

 inputs[0].d[0], inputs[1].d[0]);
 return output;
 }
 case 1:
 return inputs[0];
 default:
 throw std::invalid_argument(“invalid output”);
}

The override for supportsFormatCombination must indicate whether a format combination
is allowed. The interface indexes the inputs/outputs uniformly as “connections”, starting at 0
for the first input, then the rest of the inputs in order, followed by numbering the outputs. In
the example, the inputs are connections 0 and 1, and the outputs are connections 2 and 3.

TensorRT uses supportsFormatCombination to ask whether a given combination of formats/
types are okay for a connection, given formats/types for lesser indexed connections. So the
override can assume that lesser indexed connections have already been vetted and focus on
the connection with index pos.
bool BarPlugin::supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int
 nbInputs, int nbOutputs) override
{
 assert(0 <= pos && pos < 4);
 const auto* in = inOut;
 const auto* out = inOut + nbInputs;
 switch (pos)
 {
 case 0: return in[0].format == TensorFormat::kLINEAR;
 case 1: return in[1].type == in[0].type &&
 in[0].format == TensorFormat::kLINEAR;
 case 2: return out[0].type == in[0].type &&
 out[0].format == TensorFormat::kLINEAR;
 case 3: return out[1].type == in[0].type &&
 out[1].format == TensorFormat::kLINEAR;
 }
 throw std::invalid_argument(“invalid connection number”);
}

The local variables in and out here allow inspecting inOut by input or output number instead
of connection number.

Important: The override inspects the format/type for a connection with an index less than pos,
but must never inspect the format/type for a connection with an index greater than pos. The
example uses case 3 to check connection 3 against connection 0, and not use case 0 to check
connection 0 against connection 3.

TensorRT uses configurePlugin to set up a plugin at runtime. This plugin doesn’t need
configurePlugin to do anything, so it’s a no-op:
void BarPlugin::configurePlugin(
 const DynamicPluginTensorDesc* in, int nbInputs,
 const DynamicPluginTensorDesc* out, int nbOutputs) override
{
}

If the plugin needed to know the minimum or maximum dimensions it might encounter, it can
inspect the field DynamicPluginTensorDesc::min or DynamicPluginTensorDesc::max
for any input or output. Format and build-time dimension information can be found in

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 67

DynamicPluginTensorDesc::desc. Any runtime dimensions appear as -1. The actual
dimension is supplied to BarPlugin::enqueue.

Finally, the override BarPlugin::enqueue has to do the work. Since shapes are dynamic,
enqueue is handed a PluginTensorDesc that describes the actual dimensions, type, and
format of each input and output.

9.1.2. Example: Adding A Custom Layer With INT8 I/
O Support Using C++

PoolPlugin is a plugin to demonstrate how to extend INT8 I/O for the custom pooling layer.
The derivation is as follows:
class PoolPlugin : public IPluginV2IOExt
{
 ...override virtual methods inherited from IPluginV2IOExt.
};

Most of the pure virtual methods are common to plugins. The main methods that affect INT8 I/
O are:

‣ supportsFormatCombination

‣ configurePlugin

‣ enqueue

The override for supportsFormatCombination must indicate which INT8 I/O combination
is allowed. The usage of this interface is similar to Example: Adding A Custom Layer With
Dynamic Shape Support Using C++. In this example, the supported I/O tensor format is linear
CHW with FP32, FP16, or INT8 data type, but the I/O tensor must have the same data type.
bool PoolPlugin::supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int
 nbInputs, int nbOutputs) const override
{
 assert(nbInputs == 1 && nbOutputs == 1 && pos < nbInputs + nbOutputs);
 bool condition = inOut[pos].format == TensorFormat::kLINEAR;
 condition &= inOut[pos].type != DataType::kINT32;
 condition &= inOut[pos].type == inOut[0].type;
 return condition;
}

Important:

‣ If INT8 calibration must be used with a network with INT8 I/O plugins, the plugin must
support FP32 I/O as it is used by the FP32 calibration graph.

‣ If the FP32 I/O variant is not supported or INT8 calibration is not used, all required INT8 I/O
tensors scales must be set explicitly.

‣ Calibration can't determine the dynamic range of a plugin’s internal tensors. Plugins that
operate on quantized data must calculate their own dynamic range for internal tensors.

TensorRT invokes configurePlugin method to pass the information to the plugin through
PluginTensorDesc, which are stored as member variables, serialized and deserialized.
void PoolPlugin::configurePlugin(const PluginTensorDesc* in, int nbInput, const
 PluginTensorDesc* out, int nbOutput)
{
 ...

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 68

 mPoolingParams.mC = mInputDims.d[0];
 mPoolingParams.mH = mInputDims.d[1];
 mPoolingParams.mW = mInputDims.d[2];
 mPoolingParams.mP = mOutputDims.d[1];
 mPoolingParams.mQ = mOutputDims.d[2];
 mInHostScale = in[0].scale >= 0.0f ? in[0].scale : -1.0f;
 mOutHostScale = out[0].scale >= 0.0f ? out[0].scale : -1.0f;
}

Where INT8 I/O scales per tensor can be obtained from PluginTensorDesc::scale.

Finally, the override UffPoolPluginV2::enqueue has to do the work. It includes a collection
of core algorithms to execute the custom layer at runtime by using the actual batch size,
inputs, outputs, cuDNN stream, and the information configured.
int PoolPlugin::enqueue(int batchSize, const void* const* inputs, void** outputs, void*
 workspace, cudaStream_t stream)
{
 ...
 CHECK(cudnnPoolingForward(mCudnn, mPoolingDesc, &kONE, mSrcDescriptor, input, &kZERO,
 mDstDescriptor, output));
 ...
 return 0;
}

9.2. Adding Custom Layers Using The
Python API

Although the C++ API is the preferred language to implement custom layers, due to accessing
libraries like CUDA and cuDNN, you can also work with custom layers in Python applications.

You can use the C++ API to create a custom layer, package the layer using pybind11 in
Python, then load the plugin into a Python application. For more information, refer to Creating
a Network Definition in Python.

The same custom layer implementation can be used for both C++ and Python.

9.2.1. Example: Adding A Custom Layer To A
TensorRT Network Using Python

Custom layers can be added to any TensorRT network in Python using plugin nodes.

The Python API has a function called add_plugin_v2 that enables you to add a plugin node to
a network. The following example illustrates this. It creates a simple TensorRT network and
adds a Leaky ReLU plugin node by looking up TensorRT Plugin Registry.
import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger()

trt.init_libnvinfer_plugins(TRT_LOGGER, '')
PLUGIN_CREATORS = trt.get_plugin_registry().plugin_creator_list

def get_trt_plugin(plugin_name):
 plugin = None
 for plugin_creator in PLUGIN_CREATORS:
 if plugin_creator.name == plugin_name:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Network.html#tensorrt.INetworkDefinition.add_plugin_v2

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 69

 lrelu_slope_field = trt.PluginField("neg_slope", np.array([0.1],
 dtype=np.float32), trt.PluginFieldType.FLOAT32)
 field_collection = trt.PluginFieldCollection([lrelu_slope_field])
 plugin = plugin_creator.create_plugin(name=plugin_name,
 field_collection=field_collection)
 return plugin

def main():
 builder = trt.Builder(TRT_LOGGER)
 network = builder.create_network()
 config = builder.create_builder_config()
 config.max_workspace_size = 2**20
 input_layer = network.add_input(name="input_layer", dtype=trt.float32, shape=(1, 1))
 lrelu = network.add_plugin_v2(inputs=[input_layer], plugin=get_trt_plugin("LReLU_TRT"))
 lrelu.get_output(0).name = "outputs"
 network.mark_output(lrelu.get_output(0))

9.3. Using Custom Layers When
Importing A Model With A Parser

The ONNX parser automatically attempts to import unrecognized nodes as plugins. If a plugin
with the same op_type as the node is found in the plugin registry, the parser forwards the
attributes of the node to the plugin creator as plugin field parameters in order to create the
plugin. By default, the parser uses “1” as the plugin version and “” as the plugin namespace.
This behavior can be overridden by setting a plugin_version and/or plugin_namespace
string attribute in the corresponding ONNX node.

In some cases, you might want to modify an ONNX graph prior to importing it into TensorRT.
For example, to replace a set of ops with a plugin node. To accomplish this, you can use the
ONNX GraphSurgeon utility. For details on how to use ONNX-GraphSurgeon to replace a
subgraph, refer to this example.

For more examples, refer to the onnx_packnet sample.

9.4. Plugin API Description
All new plugins should derive classes from both IPluginCreator and one of the plugin
base classes described in Adding Custom Layers Using The C++ API. In addition, new
plugins should also call the REGISTER_TENSORRT_PLUGIN(...) macro to register
the plugin with the TensorRT Plugin Registry or create an init function equivalent to
initLibNvInferPlugins().

9.4.1. Migrating Plugins From TensorRT 6.x Or 7.x
To TensorRT 8.x.x

IPluginV2 and IPluginV2Ext are still supported for backward compatibility with TensorRT
5.1 and 6.0.x respectively. However, new plugins should target the IPluginV2DynamicExt or
IPluginV2IOExt interfaces, and old ones refactored to use these interfaces.

The new features in IPluginV2DynamicExt are as follows:

https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon/examples/08_replacing_a_subgraph
https://github.com/NVIDIA/TensorRT/tree/main/samples/python/onnx_packnet

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 70

virtual DimsExprs getOutputDimensions(int outputIndex, const DimsExprs* inputs, int nbInputs,
 IExprBuilder& exprBuilder) = 0;

virtual bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs,
 int nbOutputs) = 0;

virtual void configurePlugin(const DynamicPluginTensorDesc* in, int nbInputs, const
 DynamicPluginTensorDesc* out, int nbOutputs) = 0;

virtual size_t getWorkspaceSize(const PluginTensorDesc* inputs, int nbInputs, const
 PluginTensorDesc* outputs, int nbOutputs) const = 0;

virtual int enqueue(const PluginTensorDesc* inputDesc, const PluginTensorDesc* outputDesc,
 const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) = 0;

The new features in IPluginV2IOExt are as follows:
virtual void configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc*
 out, int nbOutput) = 0;

virtual bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs,
 int nbOutputs) const = 0;

Guidelines for migration to IPluginV2DynamicExt or IPluginV2IOExt:

‣ getOutputDimensions implements the expression for output tensor dimensions given the
inputs.

‣ supportsFormatCombination checks if the plugin supports the format and datatype for
the specified input/output.

‣ configurePlugin mimics the behavior of equivalent configurePlugin in IPluginV2Ext
but accepts tensor descriptors.

‣ getWorkspaceSize and enqueue mimic the behavior of equivalent APIs in IPluginV2Ext
but accept tensor descriptors.

Refer to the API description in IPluginV2 API Description for more details about the API.

9.4.2. IPluginV2 API Description
The following section describes the functions of the IPluginV2 class. To connect a plugin
layer to neighboring layers and set up input and output data structures, the builder checks for
the number of outputs and their dimensions by calling the following plugins methods.

getNbOutputs

Used to specify the number of output tensors.
getOutputDimensions

Used to specify the dimensions of output as a function of the input dimensions.
supportsFormat

Used to check if a plugin supports a given data format.
getOutputDataType

Used to get the data type of the output at a given index. The returned data type must have a
format that is supported by the plugin.

Plugin layers can support four data formats, for example:

‣ NCHW single (FP32), half-precision (FP16), and integer (INT32) tensors

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 71

‣ NC/2HW2 and NHWC8 half-precision (FP16) tensors

The formats are enumerated by PluginFormatType.

Plugins that do not compute all data in place and need memory space in addition to input and
output tensors can specify the additional memory requirements with the getWorkspaceSize
method, which is called by the builder to determine and pre-allocate scratch space.

During both build and inference time, the plugin layer is configured and executed, possibly
multiple times. At build time, to discover optimal configurations, the layer is configured,
initialized, executed, and terminated. After the optimal format is selected for a plugin, the
plugin is once again configured, then it is initialized once and executed as many times as
needed for the lifetime of the inference application, and finally terminated when the engine is
destroyed. These steps are controlled by the builder and the engine using the following plugin
methods:
configurePlugin

Communicates the number of inputs and outputs, dimensions and datatypes of all inputs
and outputs, broadcast information for all inputs and outputs, the chosen plugin format,
and maximum batch size. At this point, the plugin sets up its internal state and selects the
most appropriate algorithm and data structures for the given configuration.

initialize

The configuration is known at this time, and the inference engine is being created, so the
plugin can set up its internal data structures and prepare for execution.

enqueue

Encapsulates the actual algorithm and kernel calls of the plugin and provides the runtime
batch size, pointers to input, output, and scratch space, and the CUDA stream to be used
for kernel execution.

terminate

The engine context is destroyed, and all the resources held by the plugin must be released.
clone

This is called every time a new builder, network, or engine is created that includes this
plugin layer. It must return a new plugin object with the correct parameters.

destroy

Used to destroy the plugin object and/or other memory allocated each time a new plugin
object is created. It is called whenever the builder or network or engine is destroyed.

set/getPluginNamespace

This method is used to set the library namespace that this plugin object belongs to
(default can be ""). All plugin objects from the same plugin library should have the same
namespace.

IPluginV2Ext supports plugins that can handle broadcast inputs and outputs. The following
methods need to be implemented for this feature:
canBroadcastInputAcrossBatch

This method is called for each input whose tensor is semantically broadcast across a
batch. If canBroadcastInputAcrossBatch returns true (meaning the plugin can support

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 72

broadcast), TensorRT does not replicate the input tensor. There is a single copy that the
plugin should share across the batch. If it returns false, TensorRT replicates the input
tensor so that it appears like a non-broadcasted tensor.

isOutputBroadcastAcrossBatch

This is called for each output index. The plugin should return true the output at the given
index and is broadcast across the batch.

IPluginV2IOExt

This is called by the builder prior to initialize(). It provides an opportunity for the layer
to make algorithm choices on the basis of I/O PluginTensorDesc and the maximum batch
size.

9.4.3. IPluginCreator API Description
The following methods in the IPluginCreator class are used to find and create the
appropriate plugin from the Plugin Registry:

getPluginName
This returns the plugin name and should match the return value of
IPluginExt::getPluginType.

getPluginVersion
Returns the plugin version. For all internal TensorRT plugins, this defaults to 1.

getFieldNames
To successfully create a plugin, it is necessary to know all the field parameters of the
plugin. This method returns the PluginFieldCollection struct with the PluginField
entries populated to reflect the field name and PluginFieldType (the data should point to
nullptr).

createPlugin
This method is used to create the plugin using the PluginFieldCollection argument.
The data field of the PluginField entries should be populated to point to the actual data
for each plugin field entry.

Note: The data passed to the createPlugin function should be allocated by the caller and
eventually freed by the caller when the program is destroyed. The ownership of the plugin
object returned by the createPlugin function is passed to the caller and must be destroyed
as well.

deserializePlugin
This method is called internally by the TensorRT engine based on the plugin name and
version. It should return the plugin object to be used for inference. The plugin object
created in this function is destroyed by the TensorRT engine when the engine is destroyed.

set/getPluginNamespace
This method is used to set the namespace that this creator instance belongs to (default can
be "").

Extending TensorRT With Custom Layers

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 73

9.5. Best Practices For Custom Layers
Plugin

Debugging Custom Layer Issues

Memory allocated in the plugin must be freed to ensure no memory leak. If resources are
acquired in the initialize() function, they need to be released in the terminate()
function. All other memory allocations should be freed, preferably in the plugin class
destructor or in the destroy() method. Adding Custom Layers Using The C++ API outlines
this in detail and also provides some notes for best practices when using plugins.

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 74

Chapter 10. Working With Loops

NVIDIA TensorRT supports loop-like constructs, which can be useful for recurrent networks.
TensorRT loops support scanning over input tensors, recurrent definitions of tensors, and both
“scan outputs” and “last value” outputs.

10.1. Defining A Loop
A loop is defined by loop boundary layers.

‣ ITripLimitLayer specifies how many times the loop iterates.

‣ IIteratorLayer enables a loop to iterate over a tensor.

‣ IRecurrenceLayer specifies a recurrent definition.

‣ ILoopOutputLayer specifies an output from the loop.

Each of the boundary layers inherits from class ILoopBoundaryLayer, which has a method
getLoop() for getting its associated ILoop. The ILoop object identifies the loop. All loop
boundary layers with the same ILoop belong to that loop.

Figure 12 depicts the structure of a loop and data flow at the boundary. Loop-invariant tensors
can be used inside the loop directly, such as shown for FooLayer.

Working With Loops

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 75

Figure 12. A TensorRT loop is set by loop boundary layers. Dataflow can
leave the loop only via ILoopOutputLayer. The only back edges
allowed are the second input to IRecurrenceLayer.

A loop can have multiple IIteratorLayer, IRecurrenceLayer, and ILoopOutputLayer, and
at most two ITripLimitLayers as explained later. A loop with no ILoopOutputLayer has no
output and is optimized by TensorRT.

The Layers For Flow-Control Constructs section in the NVIDIA TensorRT Support Matrix
describes the TensorRT layers which may be used in the loop interior.

Interior layers are free to use tensors defined inside or outside the loop. The interior can
contain other loops (refer to Nested Loops) and other conditional constructs (refer to
Conditionals Nesting).

To define a loop, first, create an ILoop object with the method
INetworkDefinition::addLoop. Then add the boundary and interior layers. The rest of
this section describes the features of the boundary layers, using loop to denote the ILoop*
returned by INetworkDefinition::addLoop.

ITripLimitLayer supports both counted loops and while-loops.

‣ loop->addTripLimit(t,TripLimit::kCOUNT) creates an ITripLimitLayer whose
input t is a 0D INT32 tensor that specifies the number of loop iterations.

‣ loop->addTripLimit(t,TripLimit::kWHILE) creates an ITripLimitLayer whose
input t is a 0D Bool tensor that specifies whether an iteration should occur. Typically t is
either the output of an IRecurrenceLayer or a calculation based on said output.

A loop can have at most one of each kind of limit.

IIteratorLayer supports iterating forwards or backward over any axis.

‣ loop->addIterator(t) adds an IIteratorLayer that iterates over axis 0 of tensor t.
For example, if the input is the matrix:

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#layers-flow-control-constructs

Working With Loops

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 76

2 3 5
4 6 8

the output is the 1D tensor {2, 3, 5} on the first iteration and {4, 6, 8} for the second
iteration. It’s invalid to iterate beyond the tensor’s bounds.

‣ loop->addIterator(t,axis) is similar, but the layer iterates over the given axis. For
example, if axis=1 and the input is a matrix, each iteration delivers a column of the matrix.

‣ loop->addIterator(t,axis,reverse) is similar, but the layer produces its output in
reverse order if reverse=true.

ILoopOutputLayer supports three forms of loop output:

‣ loop->addLoopOutput(t,LoopOutput::kLAST_VALUE) outputs the last value of t,
where t must be the output of a IRecurrenceLayer.

‣ loop->addLoopOutput(t,LoopOutput::kCONCATENATE,axis) outputs the
concatenation of each iteration’s input to t. For example, if the input is a 1D tensor, with
value {a,b,c} on the first iteration and {d,e,f} on the second iteration, and axis=0, the
output is the matrix:
a b c
d e f

If axis=1, the output is:
a d
b e
c f

‣ loop->addLoopOutput(t,LoopOutput::kREVERSE,axis) is similar, but reverses the
order.

Both the kCONCATENATE and kREVERSE forms of ILoopOutputLayer require a 2nd input,
which is a 0D INT32 shape tensor specifying the length of the new output dimension. When the
length is greater than the number of iterations, the extra elements contain arbitrary values.
The second input, for example u, should be set using ILoopOutputLayer::setInput(1,u).

Finally, there is IRecurrenceLayer. Its first input specifies the initial output value, and its
second input specifies the next output value. The first input must come from outside the loop;
the second input usually comes from inside the loop. For example, the TensorRT analog of this
C++ fragment:
for (int32_t i = j; ...; i += k) ...

could be created by these calls, where j and k are ITensor*.
ILoop* loop = n.addLoop();
IRecurrenceLayer* iRec = loop->addRecurrence(j);
ITensor* i = iRec->getOutput(0);
ITensor* iNext = addElementWise(*i, *k,
 ElementWiseOperation::kADD)->getOutput(0);
iRec->setInput(1, *iNext);

The second input to IRecurrenceLayer is the only case where TensorRT allows a back edge.
If such inputs are removed, the remaining network must be acyclic.

10.2. Formal Semantics
TensorRT has applicative semantics, meaning there are no visible side effects other than
engine inputs and outputs. Because there are no side effects, intuitions about loops from

Working With Loops

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 77

imperative languages do not always work. This section defines formal semantics for
TensorRT’s loop constructs.

The formal semantics is based on lazy sequences of tensors. Each iteration of a loop
corresponds to an element in the sequence. The sequence for a tensor X inside the loop is
denoted ⟨X0, X1, X2, ...⟨. Elements of the sequence are evaluated lazily, meaning, as
needed.

The output from IIteratorLayer(X) is ⟨X[0], X[1], X[2], ...⟨ where X[i] denotes
subscripting on the axis specified for the IIteratorLayer.

The output from IRecurrenceLayer(X,Y)is ⟨X, Y0, Y1, Y2, ...⟨.

The input and output from an ILoopOutputLayer depend on the kind of LoopOutput.

‣ kLAST_VALUE: Input is a single tensor X, and output is Xn for an n-trip loop.

‣ kCONCATENATE: The first input is a tensor X, and the second input is a scalar shape
tensor Y. The result is the concatenation of X0, X1, X2, ... Xn-1 with post padding,
if necessary, to the length specified by Y. It is a runtime error if Y < n. Y is a build-time
constant. Note the inverse relationship with IIteratorLayer. IIteratorLayer maps
a tensor to a sequence of subtensors; ILoopOutputLayer with kCONCATENATE maps a
sequence of sub-tensors to a tensor.

‣ kREVERSE: Similar to kCONCATENATE, but the output is in the reverse direction.

The value of n in the definitions for the output of ILoopOutputLayer is determined by the
ITripLimitLayer for the loop:

‣ For counted loops, it’s the iteration count, meaning the input to the ITripLimitLayer.

‣ For while loops, it’s the least n such that Xn is false, where X is the sequence for the
ITripLimitLayer’s input tensor.

The output from a non-loop layer is a sequence-wise application of the layer’s function. For
example, for a two-input non-loop layer F(X,Y) = ⟨f(X0,Y0), f(X1,Y1), f(X2,Y2)...⟨. If a
tensor comes from outside the loop, i.e. is loop-invariant, then the sequence for it is created by
replicating the tensor.

10.3. Nested Loops
TensorRT infers the nesting of the loops from the data flow. For instance, if loop B uses values
defined inside loop A, then B is considered to be nested inside of A.

TensorRT rejects networks where the loops are not cleanly nested, such as if loop A uses
values defined in the interior of loop B and vice versa.

10.4. Limitations
A loop that refers to more than one dynamic dimension can take an unexpected amount of
memory.

Working With Loops

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 78

In a loop, memory is allocated as if all dynamic dimensions take on the maximum value
of any of those dimensions. For example, if a loop refers to two tensors with dimensions
[4,x,y] and [6,y], memory allocation for those tensors are as if their dimensions were
[4,max(x,y),max(x,y)] and [6,max(x,y)].

The input to a LoopOutputLayer with kLAST_VALUE must be the output from an
IRecurrenceLayer.

The loop API supports only FP32 and FP16 precision.

10.5. Replacing IRNNv2Layer With Loops
IRNNv2Layer was deprecated in TensorRT 7.2.1 and will be removed in TensorRT 9.0. Use
the loop API to synthesize a recurrent sub-network. For an example, refer to sampleCharRNN,
method SampleCharRNNLoop::addLSTMCell. The loop API lets you express general recurrent
networks instead of being limited to the prefabricated cells in IRNNLayer and IRNNv2Layer.

Refer to sampleCharRNN for more information.

https://github.com/NVIDIA/TensorRT/blob/main/samples/sampleCharRNN

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 79

Chapter 11. Working With Conditionals

NVIDIA TensorRT supports conditional if-then-else flow control. TensorRT conditionals are
used to implement conditional execution of network subgraphs.

11.1. Defining A Conditional
An if-conditional is defined by conditional boundary layers:

‣ IConditionLayer represents the predicate and specifies whether the conditional should
execute the true-branch (then-branch) or the false-branch (else-branch).

‣ IIfConditionalInputLayer specifies an input to one of the two conditional branches.

‣ IIfConditionalOutputLayer specifies an output from a conditional.

Each of the boundary layers inherits from class IIfConditionalBoundaryLayer, which
has a method getConditional() for getting its associated IIfConditional. The
IIfConditional instance identifies the conditional. All conditional boundary layers with the
same IIfConditional belong to that conditional.

A conditional must have exactly one instance of IConditionLayer, zero, or more instances of
IIfConditionalInputLayer, and at least one instance of IIfConditionalOutputLayer.

IIfConditional implements an if-then-else flow-control construct that provides conditional-
execution of a network subgraph based on a dynamic boolean input. It is defined by a
boolean scalar predicate condition, and two branch subgraphs: a trueSubgraph which is
executed when condition evaluates to true, and a falseSubgraph which is executed when
condition evaluates to false:
If condition is true then:
 output = trueSubgraph(trueInputs);
Else
 output = falseSubgraph(falseInputs);
Emit output

Both the true-branch and the false-branch must be defined, similar to the ternary operator in
many programming languages.

To define an if-conditional, create an IIfConditional instance with the method
INetworkDefinition::addIfConditional, then add the boundary and branch layers.
IIfConditional* simpleIf = network->addIfConditional();

The IIfConditional::setCondition method takes a single argument: the condition tensor.
This 0D boolean tensor (scalar) can be computed dynamically by earlier layers in the network.

Working With Conditionals

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 80

It is used to decide which of the branches to execute. An IConditionLayer has a single input
(the condition) and no outputs since it is used internally by the conditional implementation.
// Create a condition predicate that is also a network input.
auto cond = network->addInput("cond", DataType::kBOOL, Dims{0});
IConditionLayer* condition = simpleIf->setCondition(*cond);

TensorRT doesn't support a subgraph abstraction for implementing conditional branches and
instead uses IIfConditionalInputLayer and IIfConditionalOutputLayer to define the
boundaries of conditionals.

‣ An IIfConditionalInputLayerabstracts a single input to one or both
of the branch subgraphs of an IIfConditional. The output of a specific
IIfConditionalInputLayercan feed both branches.
// Create an if-conditional input.
// x is some arbitrary Network tensor.
IIfConditionalInputLayer* inputX = simpleIf->addInput(*x);

Inputs to the then-branch and the else-branch do not need to be of the same type and
shape, each branch can independently include zero or more inputs.

IIfConditionalInputLayeris optional and is used to control which layers will be part
of the branches (refer to Conditional Execution). If all of a branch's outputs do not depend
on an IIfConditionalInputLayerinstance, that branch is empty. An empty else-branch
can be useful when there are no layers to evaluate when the condition is false, and
the network evaluation should proceed following the conditional (refer to Conditional
Examples).

‣ An IIfConditionalOutputLayerabstracts a single output of the if-conditional. It has
two inputs: an output from the true-subgraph (input index 0) and an output from the false-
subgraph (input index 1). The output of an IIfConditionalOutputLayer can be thought
of as a placeholder for the final output which will be determined during runtime.

IIfConditionalOutputLayer serves a role similar to that of a Φ (Phi) function node in
traditional SSA control-flow graphs. Its semantics are: choose either the output of the
true-subgraph or the false-subgraph.
// trueSubgraph and falseSubgraph represent network subgraphs
IIfConditionalOutputLayer* outputLayer = simpleIf->addOutput(
 *trueSubgraph->getOutput(0),
 *falseSubgraph->getOutput(0));

All outputs of an IIfConditional must be sourced at an IIfConditionalOutputLayer
instance.

An if-conditional without outputs has no effect on the rest of the network, therefore, it is
considered ill-formed. Each of the two branches (subgraphs) must also have at least one
output. The output of an if-conditional can be marked as the output of the network, unless
that if-conditional is nested inside another if-conditional or loop.

The diagram below provides a graphical representation of the abstract model of an if-
conditional. The green rectangle represents the interior of the conditional, which is limited to
the layer types listed in Layers For Flow-Control Constructs section in the NVIDIA TensorRT
Support Matrix.

https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#layers-flow-control-constructs

Working With Conditionals

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 81

Figure 13. An if-conditional construct abstract model

11.2. Conditional Execution
Conditional-execution of network layers is a network evaluation strategy in which branch-
layers (the layers belonging to a conditional subgraph) are executed only if the values of the
branch outputs are needed. In conditional-execution, either the true-branch or the false-
branch is executed and allowed to change the network state.

In contrast, in predicated-execution, both the true-branch and the false-branch are executed
and only one of these is allowed to change the network evaluation state, depending on the
value of the condition predicate (i.e. only the outputs of one of the subgraphs is fed into the
following layers).

Conditional-execution is sometimes called lazy evaluation, and predicated-execution is
sometimes referred to as eager evaluation.

Instances of IIfConditionalInputLayer can be used to specify which layers are
invoked eagerly and which are invoked lazily. This is done by tracing the network layers

Working With Conditionals

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 82

backwards, starting with each of the conditional outputs. Layers which are data-dependent
on the output of at least one IIfConditionalInputLayer are considered internal to the
conditional and are therefore evaluated lazily. In the extreme case that no instances of
IIfConditionalInputLayer are added to the conditional, all of the layers are executed
eagerly, similarly to ISelectLayer.

The three diagrams below depict how the choice of IIfConditionalInputLayer placement
controls execution scheduling.

Figure 14. Controlling conditional-execution using
IIfConditionalInputLayer placement

In diagram A, the true-branch is composed of 3 layers (T1, T2, T3). These layers execute lazily
when the condition evaluates to true.

In diagram B, input-layer I1 is placed after layer T1, which moves T1 out of the true-branch.
Layer T1 executes eagerly before evaluating the if-construct.

In diagram C, input-layer I1 is removed altogether which moves T3 outside the conditional.
T2’s input is reconfigured to create a legal network, and T2 also moves out of the true-branch.
When the condition evaluates to true, the conditional doesn’t compute anything since the
outputs have already been eagerly computed (but it does copy the conditional relevant inputs
to its outputs).

11.3. Nesting and Loops
Conditional branches may nest other conditionals and may also nest loops. Loops may nest
conditionals. As in loop nesting, TensorRT infers the nesting of the conditionals and loops
from the data flow. For example, if conditional B uses a value defined inside loop A, then B is
considered to be nested inside of A.

Working With Conditionals

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 83

There can be no cross-edges connecting layers in the true-branch to layers in the false-
branch, and vice-versa. In other words, the outputs of one branch cannot depend on layers in
the other branch.

For example, refer to Conditional Examples for how nesting can be specified.

11.4. Limitations
The number of output tensors in both true/false subgraph branches must be the same. The
type and shape of each output tensor from the branches must be the same.

Note that this is more constrained than the ONNX specification which requires that the true/
false subgraphs have the same number of outputs and use the same outputs data-types, but
allows for different output shapes.

11.5. Conditional Examples

11.5.1. Simple If-Conditional
The following example shows how to implement a simple conditional that conditionally
performs an arithmetic operation on two tensors.

Conditional
condition = true
If condition is true:
 output = x + y
Else:
 output = x - y

Example
ITensor* addCondition(INetworkDefinition& n, bool predicate)
{
 // The condition value is a constant int32 input that is cast to boolean because TensorRT
 doesn't support boolean constant layers.

 static const Dims scalarDims = Dims{0, {}};
 static float constexpr zero{0};
 static float constexpr one{1};

 float* const val = predicate ? &one : &zero;

 ITensor* cond =
 n.addConstant(scalarDims, DataType::kINT32, val, 1})->getOutput(0);

 auto* cast = n.addIdentity(cond);
 cast->setOutputType(0, DataType::kBOOL);
 cast->getOutput(0)->setType(DataType::kBOOL);

 return cast->getOutput(0);
}

IBuilder* builder = createInferBuilder(gLogger);

Working With Conditionals

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 84

INetworkDefinition& n = *builder->createNetworkV2(0U);
auto x = n.addInput("x", DataType::kFLOAT, Dims{1, {5}});
auto y = n.addInput("y", DataType::kFLOAT, Dims{1, {5}});
ITensor* cond = addCondition(n, true);

auto* simpleIf = n.addIfConditional();
simpleIf->setCondition(*cond);

// Add input layers to demarcate entry into true/false branches.
x = simpleIf->addInput(*x)->getOutput(0);
y = simpleIf->addInput(*y)->getOutput(0);

auto* trueSubgraph = n.addElementWise(*x, *y, ElementWiseOperation::kSUM)->getOutput(0);
auto* falseSubgraph = n.addElementWise(*x, *y, ElementWiseOperation::kSUB)->getOutput(0);

auto* output = simpleIf->addOutput(*trueSubgraph, *falseSubgraph)->getOutput(0);
n.markOutput(*output);

11.5.2. Exporting from PyTorch
The following example shows how to export scripted PyTorch code to ONNX. The code in
function sum_even performs an if-conditional nested in a loop.
import torch.onnx
import torch
import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)

@torch.jit.script
def sum_even(items):
 s = torch.zeros(1, dtype=torch.float)
 for c in items:
 if c % 2 == 0:
 s += c
 return s

class ExampleModel(torch.nn.Module):
 def __init__(self):
 super().__init__()

 def forward(self, items):
 return sum_even(items)

def build_engine(model_file):
 builder = trt.Builder(TRT_LOGGER)
 network = builder.create_network(EXPLICIT_BATCH)
 config = builder.create_builder_config()
 parser = trt.OnnxParser(network, TRT_LOGGER)

 with open(model_file, 'rb') as model:
 assert parser.parse(model.read())
 return builder.build_engine(network, config)

def export_to_onnx():
 items = torch.zeros(4, dtype=torch.float)
 example = ExampleModel()
 torch.onnx.export(example, (items), "example.onnx", verbose=False, opset_version=13,
 enable_onnx_checker=False, do_constant_folding=True)

export_to_onnx()
build_engine("example.onnx")

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 85

Chapter 12. Working With DLA

NVIDIA DLA (Deep Learning Accelerator) is a fixed-function accelerator engine targeted for
deep learning operations. DLA is designed to do full hardware acceleration of convolutional
neural networks. DLA supports various layers such as convolution, deconvolution, fully-
connected, activation, pooling, batch normalization, etc. DLA does not support Explicit
Quantization.

For more information about DLA support in TensorRT layers, refer to DLA Supported Layers.
The trtexec tool has additional arguments to run networks on DLA, refer to trtexec.

To run the ResNet-50 network on DLA using trtexec in FP16 mode, issue:
 ./trtexec --onnx=data/resnet50/ResNet50.onnx --useDLACore=0 --fp16 --allowGPUFallback

To run the ResNet-50 network on DLA using trtexec in INT8 mode, issue:
 ./trtexec --onnx=data/resnet50/ResNet50.onnx --useDLACore=0 --int8 --allowGPUFallback

12.1. Running On DLA During TensorRT
Inference

The TensorRT builder can be configured to enable inference on DLA. DLA support is currently
limited to networks running in FP16 and/or INT8 mode. The DeviceType enumeration is used
to specify the device that the network or layer executes on. The following API functions in the
IBuilderConfig class can be used to configure the network to use DLA:

setDeviceType(ILayer* layer, DeviceType deviceType)

This function can be used to set the deviceType that the layer must execute on.
getDeviceType(const ILayer* layer)

This function can be used to return the deviceType that this layer executes on. If the layer
is executing on the GPU, this returns DeviceType::kGPU.

canRunOnDLA(const ILayer* layer)

This function can be used to check if a layer can run on DLA.
setDefaultDeviceType(DeviceType deviceType)

This function sets the default deviceType to be used by the builder. It ensures that all the
layers that can run on DLA runs on DLA unless setDeviceType is used to override the
deviceType for a layer.

Working With DLA

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 86

getDefaultDeviceType()

This function returns the default deviceType which was set by setDefaultDeviceType.
isDeviceTypeSet(const ILayer* layer)

This function checks whether the deviceType has been explicitly set for this layer.
resetDeviceType(ILayer* layer)

This function resets the deviceType for this layer. The value is reset to the deviceType
that is specified by setDefaultDeviceType or DeviceType::kGPU if none is specified.

allowGPUFallback(bool setFallBackMode)

This function notifies the builder to use GPU if a layer that was supposed to run on DLA
cannot run on DLA. For more information, refer to GPU Fallback Mode.

reset()

This function can be used to reset the IBuilderConfig state, which sets the deviceType
for all layers to be DeviceType::kGPU. After reset, the builder can be re-used to build
another network with a different DLA config.

The following API functions in IBuilder class can be used to help configure the network for
using the DLA:
getMaxDLABatchSize()

This function returns the maximum batch size DLA can support.

Note: For any tensor, the total volume of index dimensions combined with the requested
batch size must not exceed the value returned by this function.

getNbDLACores()

This function returns the number of DLA cores available to the user.

If the builder is not accessible, such as in the case where a plan file is being loaded online in
an inference application, then the DLA to be utilized can be specified differently by using DLA
extensions to the IRuntime. The following API functions in the IRuntime class can be used to
configure the network to use DLA:
getNbDLACores()

This function returns the number of DLA cores that are accessible to the user.
setDLACore(int dlaCore)

The DLA core to execute on. Where dlaCore is a value between 0 and getNbDLACores() -
1. The default value is 0.

getDLACore()

The DLA core the runtime execution is assigned to. The default value is 0.

12.1.1. Example: sampleMNIST With DLA
This section provides details on how to run a TensorRT sample with DLA enabled.

Working With DLA

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 87

sampleMNIST located in the GitHub repository demonstrates how to import a trained model,
build the TensorRT engine, serialize and deserialize the engine and finally use the engine to
perform inference.

The sample first creates the builder:
auto builder = SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(gLogger));
if (!builder) return false;
builder->setMaxBatchSize(batchSize);

Then, enable GPUFallback mode:
config->setFlag(BuilderFlag::kGPU_FALLBACK);
config->setFlag(BuilderFlag::kFP16); or config->setFlag(BuilderFlag::kINT8);

Enable execution on DLA, where dlaCore specifies the DLA core to execute on:
config->setDefaultDeviceType(DeviceType::kDLA);
config->setDLACore(dlaCore);

With these additional changes, sampleMNIST is ready to execute on DLA. To run
sampleMNIST with DLA Core 1, use the following command:
 ./sample_mnist --useDLACore=0 [--int8|--fp16]

12.1.2. Example: Enable DLA Mode For A Layer
During Network Creation

In this example, let’s create a simple network with input, convolution and output.

Procedure

 1. Create the builder, builder configuration, and the network:
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder.createBuilderConfig();
INetworkDefinition* network = builder->createNetworkV2(0U);

 2. Add the Input layer to the network, with the input dimensions.
auto data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{1, INPUT_H, INPUT_W});

 3. Add the convolution layer with hidden layer input nodes, strides, and weights for filter and
bias.
auto conv1 = network->addConvolution(*data->getOutput(0), 20, DimsHW{5, 5},
 weightMap["conv1filter"], weightMap["conv1bias"]);
conv1->setStride(DimsHW{1, 1});

 4. Set the convolution layer to run on DLA:
if(canRunOnDLA(conv1))
{
config->setFlag(BuilderFlag::kFP16); or config->setFlag(BuilderFlag::kINT8);
builder->setDeviceType(conv1, DeviceType::kDLA);

}

 5. Mark the output:
network->markOutput(*conv1->getOutput(0));

 6. Set the DLA core to execute on:
config->setDLACore(0)

https://github.com/NVIDIA/TensorRT/tree/main/samples/opensource/sampleMNIST

Working With DLA

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 88

12.2. DLA Supported Layers
This section lists the layers supported by DLA along with the constraints associated with each
layer.

Generic restrictions while running on DLA (applicable to all layers)

‣ Max batch size supported is 4096.

‣ DLA does not support dynamic dimensions. Thus, for wildcard dimensions, the min, max,
and opt values of the profile must be equal.

‣ TensorRT can split a DLA network into multiple sections if any restriction is violated and
GpuFallback is enabled. Otherwise, TensorRT can emit an error and fallback. For more
information, refer to GPU Fallback Mode.

‣ At most, four DLA loadables can be in use concurrently due to hardware and software
memory limitations.

Note: Batch size for DLA is the product of all index dimensions except the CHW dimensions. For
example, if input dimensions are NPQRS, the effective batch size is N*P.

Layer specific restrictions
Convolution and Fully Connected layers

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Each dimension of the kernel size must be in the range [1, 32].

‣ Padding must be in the range [0, 31].

‣ Dimensions of padding must be less than the corresponding kernel dimension.

‣ Dimensions of stride must be in the range [1, 8].

‣ Number of output maps must be in the range [1, 8192].

‣ Number of groups must be in the range [1, 8192] for operations using the formats
TensorFormat::kLINEAR, TensorFormat::kCHW16, and TensorFormat::kCHW32.

‣ Number of groups must be in the range [1, 4] for operations using the formats
TensorFormat::kCHW4.

‣ Dilated convolution must be in the range [1, 32].

‣ Operations are not supported if the CBUF size requirement wtBanksForOneKernel +
minDataBanks exceeds the numConvBufBankAllotted limitation 16, where CBUF is
the internal convolution cache that stores input weights and activation before operating
on them, wtBanksForOneKernel is the minimum banks for one kernel to store the
minimum weight/kernel elements needed for convolution, and minDataBanks is the

Working With DLA

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 89

minimum banks to store the minimum activation data needed for convolution. The
pseudo code details are as follows:

‣ wtBanksForOneKernel = uint32(ceil(roundUp(inputDims_c * kernelSize_h *
 kernelSize_w * (INT8 ? 1 : 2), 128) / 32768.0))

‣ minDataBanks = uint32(ceil(float(entriesPerDataSlice * dilatedKernelHt) / 256.0))
 where entriesPerDataSlice = uint32(ceil(ceil(inputDims_c * (INT8 ? 1 : 2) / 32.0)
 * inputDims_w / 4.0)) and dilatedKernelHt = (kernelSize_h - 1) * dilation_h + 1

‣ FAIL if wtBanksForOneKernel + minDataBanks > 16, PASS otherwise.

Deconvolution layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Dimensions of the kernel must be in the range[1, 32], in addition to 1x[64, 96,
128] and [64, 96, 128]x1.

‣ TensorRT has disabled deconvolution square kernels and strides in the range [23 -
32] on DLA as they significantly slow down compilation.

‣ Padding must be 0.

‣ Grouped deconvolution must be 1.

‣ Dilated deconvolutions must be 1.

‣ Number of input channels must be in the range [1, 8192].

‣ Number of output channels must be in the range [1, 8192].

Pooling layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Operations supported: kMAX, kAVERAGE.

‣ Dimensions of the window must be in the range [1, 8].

‣ Dimensions of padding must be in the range [0, 7].

‣ Dimensions of stride must be in the range [1, 16].

‣ With INT8 mode, input and output tensor scales must be the same.

Activation layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Functions supported: ReLU, Sigmoid, TanH, Clipped ReLU and Leaky ReLU.

‣ Negative slope is not supported for ReLU.

‣ Clipped ReLU only supports values in the range [1, 127].

‣ TanH, Sigmoid INT8 support is supported by auto-upgrading to FP16.

Working With DLA

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 90

Parametric ReLU layer

‣ Slopes input must be a build-time constant.

ElementWise layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Operations supported: Sum, Sub, Product, Max, and Min.

‣ Only Sum operation is supported in INT8.

Note: On Xavier, TensorRT concatenates a DLA Scale layer and a DLA ElementWise layer
with the operation Sum to support the Sub operation, which is not supported by a single
Xavier DLA ElementWise layer.

Scale layer

‣ Only two spatial dimension operations are supported.

‣ Both FP16 and INT8 are supported.

‣ Mode supported: Uniform, Per-Channel, and ElementWise.

‣ Only scale and shift operations are supported.

LRN (Local Response Normalization) layer

‣ Allowed window sizes are 3, 5, 7, or 9.

‣ Normalization region supported is ACROSS_CHANNELS.

‣ LRN INT8 is supported by auto-upgrading to FP16.

Concatenation layer

‣ DLA supports concatenation only along the channel axis.

‣ Concat must have at least two inputs.

‣ All the inputs must have the same spatial dimensions.

‣ With INT8 mode, the dynamic range of all the inputs must be the same.

‣ With INT8 mode, the dynamic range of output must be equal to each of the inputs.

Resize layer

‣ The number of scales has to be exactly 4.

‣ The first two elements in scales need to be exactly 1 (for unchanged batch and channel
dimensions).

‣ The last two elements in scales, representing the scale values along height and width
dimensions, respectively, need to be integer values in the range of [1, 32] in nearest-
neighbor mode and [1, 4] in bilinear mode.

Working With DLA

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 91

Unary layer

‣ Only the ABS operation is supported.

Softmax layer

‣ Only supported on NVIDIA Orin™, not Xavier™.

‣ Only supports a single input with batch size of 1.

‣ The non-batch, non-axis dimensions of input should all have size 1. For example, for
softmax with axis = 1 (i.e. on C dimension), both the H and W dimensions should be of
size 1.

Note: When running INT8 networks on the DLA using TensorRT, operations are recommended
to be added to the same subgraph to reduce quantization errors across the subgraph of
the network running on the DLA by allowing them to fuse and retain higher precision for
intermediate results. Breaking apart the subgraph in order to inspect intermediate results
by setting the tensors as network output tensors can result in different levels of quantization
errors due to these optimizations being disabled.

12.3. GPU Fallback Mode
The GPUFallbackMode sets the builder to use GPU if a layer that was marked to run on DLA
could not run on DLA.

A layer cannot run on DLA due to the following reasons:

 1. The layer operation is not supported on DLA.
 2. The parameters specified are out of the supported range for DLA.
 3. The given batch size exceeds the maximum permissible DLA batch size. For more

information, refer to DLA Supported Layers.
 4. A combination of layers in the network causes the internal state to exceed what the DLA is

capable of supporting.
 5. There are no DLA engines available on the platform.

If the GPUFallbackMode is set to false, a layer set to execute on DLA that couldn't run on
DLA results in an error. However, with GPUFallbackMode set to true, it continues to execute
on the GPU instead, after reporting a warning.

Similarly, if defaultDeviceType is set to DeviceType::kDLA and GPUFallbackMode is set to
false, it results in an error if any of the layers can't run on DLA. With GPUFallbackMode set
to true, it reports a warning and continue executing on the GPU.

If a combination of layers in the network cannot run on DLA, all layers in the combination
executes on the GPU.

Working With DLA

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 92

12.4. I/O Formats on DLA
DLA supports formats that are unique to the device and have constraints on their layout due to
vector width byte requirements.

For DLA input, kDLA_LINEAR(FP16, INT8), kDLA_HWC4(FP16, INT8), kCHW16(FP16), and
kCHW32(INT8) are supported. For DLA output, only kDLA_LINEAR(FP16, INT8), kCHW16(FP16),
and kCHW32(INT8) are supported. For kCHW16 and kCHW32 formats, if C is not an integer
multiple, then it must be padded to the next 32-byte boundary.

For kDLA_LINEAR format, the stride along the W dimension must be padded up to 64 bytes.
The memory format is equivalent to a C array with dimensions [N][C][H][roundUp(W, 64/
elementSize)] where elementSize is 2 for FP16 and 1 for Int8, with the tensor coordinates
(n, c, h, w) mapping to array subscript [n][c][h][w].

For kDLA_HWC4 format, the stride along the W dimension must be a multiple of 32 bytes on
Xavier and 64 bytes on Orin.

‣ When C == 1, TensorRT maps the format to the native grayscale image format.

‣ When C == 3 or C == 4, it maps to the native color image format. If C == 3, the stride for
stepping along the W axis needs to be padded to 4 in elements.

In this case, the padded channel is located at the 4th-index. Ideally, the padding value
doesn't matter because the 4th channel in the weights is padded to zero by the DLA
compiler; however, it is safe for the application to allocate a zero-filled buffer of four
channels and populate three valid channels.

‣ When C is {1, 3, 4}, then padded C' is {1, 4, 4} respectively, the memory layout is
equivalent to a C array with dimensions [N][H][roundUp(W, 32/C'/elementSize)][C']
where elementSize is 2 for FP16 and 1 for Int8. The tensor coordinates (n, c, h, w)
mapping to array subscript [n][h][w][c], roundUp calculates the smallest multiple of
64/elementSize greater than or equal to W.

When using kDLA_HWC4 as DLA input format, it has the following requirements:

‣ C must be 1, 3, or 4

‣ The first layer must be convolution.

‣ The convolution parameters must meet DLA requirements, refer to DLA Supported Layers.

When the EngineCapability is EngineCapability::kSTANDARD and TensorRT cannot
generate a reformat-free network for the given input/output formats, the unsupported DLA
formats can be automatically converted into supported DLA format. For example, if the layers
connected to the network inputs or outputs cannot run on DLA or if the network does not meet
other DLA requirements, reformat operations are inserted to satisfy constraints. In all cases,
the strides that TensorRT expects data to be formatted with can be obtained by querying
IExecutionContext::getStrides.

Working With DLA

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 93

12.5. DLA Standalone Mode
If you are using a separate DLA runtime component, you can use
EngineCapability::kDLA_STANDALONE to generate a DLA loadable. See the documentation
for the DLA runtime component in question for how to use the loadable.

When using kDLA_STANDALONE, TensorRT generates a reformat free network for the
given input/output formats. For DLA input, kLINEAR(FP16, INT8), kCHW4(FP16, INT8),
kCHW16(FP16), and kCHW32(INT8) are supported. While for DLA output, only kLINEAR(FP16,
INT8), kCHW16(FP16), and kCHW32(INT8) are supported. For kCHW16 and kCHW32 formats, the
C channel count is recommended to be equivalent to a positive integer multiple of the vector
size. If C is not an integer multiple, then it must be padded to the next 32-byte boundary.

12.6. Customizing DLA Memory Pools
You can customize the size of the memory pools allocated to each DLA loadable in a
network. There are three types of DLA memory pools (see enum class MemoryPoolType for
descriptions of each pool):

‣ Managed SRAM

‣ Local DRAM

‣ Global DRAM

For each pool type, use the API IBuilderConfig::setMemoryPoolLimit and
IBuilderConfig::getMemoryPoolLimit to set and query the size of the pool in question to
allocate larger memory pools to each DLA loadable. The amount of memory actually required
for each loadable may be less than the pool size, in which case the smaller amount will be
allocated. The pool size serves only as an upper bound.

Note that all DLA memory pools require sizes that are powers of 2, with a minimum of 4 KiB.
Violating this requirement results in a DLA loadable compilation failure.

Managed SRAM is distinct from other DRAM pools mainly due to the difference in role. Here
are some aspects of managed SRAM worth noting:

‣ It is similar to a cache in that the resource is scarce and DLA can run without it by falling
back to local DRAM.

‣ Any amount allocated tends to be fully exploited. Therefore, the reported SRAM is usually
the same as the amount of SRAM pool allocated (which may differ from user-specified size
in certain cases).

‣ Due to the cache-like nature, DLA falls back to DRAM upon insufficient SRAM instead
of failing. Thus, if affordable, try increasing the amount of SRAM even after a successful
engine construction, to see if there is any gain in inference speed. This applies particularly
to networks with many subgraphs being offloaded.

‣ There is a difference between Orin and Xavier in the maximum amount of SRAM available
per core: Xavier provides 4 MiB total across 4 cores including 2 DLA cores, whereas Orin
dedicates 1 MiB SRAM to each DLA core. The implication is that when running multiple

Working With DLA

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 94

networks on a device, Xavier requires an explicit control of aggregate SRAM consumption
whereas Orin has less to worry about in that aspect.

In multi-subgraph situations, it is important to keep in mind that the pool sizes apply per DLA
subgraph, not for the whole network.

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 95

Chapter 13. Performance Best Practices

13.1. Measuring Performance
Before starting any optimization effort with TensorRT, it’s essential to determine what should
be measured. Without measurements, it’s impossible to make reliable progress or measure
whether success has been achieved.

Latency

A performance measurement for network inference is how much time elapses from an input
being presented to the network until an output is available. This is the latency of the network
for a single inference. Lower latencies are better. In some applications, low latency is a critical
safety requirement. In other applications, latency is directly visible to users as a quality of
service issue. For bulk processing, latency may not be important at all.

Throughput

Another performance measurement is how many inferences can be completed in a fixed unit
of time. This is the throughput of the network. Higher throughput is better. Higher throughputs
indicate a more efficient utilization of fixed compute resources. For bulk processing, the total
time taken will be determined by the throughput of the network.

Another way of looking at latency and throughput is to fix the maximum latency and measure
throughput at that latency. A quality-of-service measurement like this can be a reasonable
compromise between the user experience and system efficiency.

Before measuring latency and throughput, you need to choose the exact points at which to
start and stop timing. Depending on the network and application, it might make sense to
choose different points.

In many applications, there is a processing pipeline, and the overall system performance can
be measured by the latency and throughput of the entire processing pipeline. Because the
pre- and post-processing steps depend so strongly on the particular application, this section
considers the latency and throughput of the network inference only.

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 96

13.1.1. Wall-clock Timing
Wall-clock time (the elapsed time between the start of a computation and its end) can be
useful for measuring the overall throughput and latency of the application, and for placing
inference times in context within a larger system. C++11 provides high precision timers in the
<chrono> standard library. For example, std::chrono::system_clock represents system-
wide wall-clock time, and std::chrono::high_resolution_clock measures time in the
highest precision available.

The following example code snippet shows measuring network inference host time:
#include <chrono>

auto startTime = std::chrono::high_resolution_clock::now();
context->enqueueV2(&buffers[0], stream, nullptr);
cudaStreamSynchronize(stream);
auto endTime = std::chrono::high_resolution_clock::now();
float totalTime = std::chrono::duration<float, std::milli>
(endTime - startTime).count();

If there is only one inference happening on the device at one time, then this can be a simple
way of profiling the time various operations take. Inference is typically asynchronous, so
ensure you add an explicit CUDA stream or device synchronization to wait for results to
become available.

13.1.2. CUDA Events
One problem with timing on the host exclusively is that it requires host/device synchronization.
Optimized applications may have many inferences running in parallel on the device with
overlapping data movement. In addition, the synchronization itself adds some amount of noise
to timing measurements.

To help with these issues, CUDA provides an Event API. This API allows you to place events
into CUDA streams that will be time-stamped by the GPU as they are encountered. Differences
in timestamps can then tell you how long different operations took.

The following example code snippet shows computing the time between two CUDA events:
cudaEvent_t start, end;
cudaEventCreate(&start);
cudaEventCreate(&end);

cudaEventRecord(start, stream);
context->enqueueV2(&buffers[0], stream, nullptr);
cudaEventRecord(end, stream);

cudaEventSynchronize(end);
float totalTime;
cudaEventElapsedTime(&totalTime, start, end);

13.1.3. Built-In TensorRT Profiling
Digging deeper into the performance of inference requires more fine-grained timing
measurements within the optimized network.

TensorRT has a Profiler (C++, Python) interface, which you can implement in order to have
TensorRT pass profiling information to your application. When called, the network will run in
a profiling mode. After finishing inference, the profiler object of your class is called to report

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__EVENT
https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_profiler.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Profiler.html

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 97

the timing for each layer in the network. These timings can be used to locate bottlenecks,
compare different versions of a serialized engine, and debug performance issues.

The profiling information can be collected from a regular inference enqueueV2()
launch or a CUDA graph launch. Refer to IExecutionContext::setProfiler() and
IExecutionContext::reportToProfiler() (C++, Python) for more information.

Layers inside a loop compile into a single monolithic layer, therefore, separate timings for
those layers are not available.

An example showing how to use the IProfiler interface is provided in the common sample
code (common.h), and then used in sampleNMT located in the GitHub repository.

You can also use trtexec to profile a network with TensorRT given an input network or plan
file. Refer to the trtexec section for details.

13.1.4. CUDA Profiling Tools
The recommended CUDA profiler is NVIDIA Nsight™ Systems. Some CUDA developers may be
more familiar with nvprof and nvvp, however, these are being deprecated. In any case, these
profilers can be used on any CUDA program to report timing information about the kernels
launched during execution, data movement between host and device, and CUDA API calls
used.

Nsight Systems can be configured in various ways to report timing information for only a
portion of the execution of the program or to also report traditional CPU sampling profile
information together with GPU information.

Profile only the inference phase

When profiling a TensorRT application, you should enable profiling only after the engine
has been built. During the build phase, all possible tactics are tried and timed. Profiling this
portion of the execution will not show any meaningful performance measurements and will
include all possible kernels, not the ones actually selected for inference. One way to limit the
scope of profiling is to:

‣ First phase: Structure the application to build and then serialize the engines in one phase.

‣ Second phase: Load the serialized engines and run inference in a second phase and profile
this second phase only.

If the application cannot serialize the engines, or if the application must run through the
two phases consecutively, you can also add cudaProfilerStart()/cudaProfilerStop()
CUDA APIs around the second phase and add -c cudaProfilerApi flag to Nsight Systems
command to profile only the part between cudaProfilerStart() and cudaProfilerStop().

Utilize the NVTX tracing in Nsight Systems

Enabling NVIDIA Tools Extension SDK (NVTX) tracing allows Nsight Compute and Nsight
Systems to collect data generated by TensorRT applications. NVTX is a C-based API for
marking events and ranges in your applications.

https://docs.nvidia.com/deeplearning/tensorrt/api/c_api/classnvinfer1_1_1_i_execution_context.html#a0e7271a7ea69c348f64db31b96103620
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/ExecutionContext.html?highlight=report_to_profiler#tensorrt.IExecutionContext.report_to_profiler
https://github.com/NVIDIA/TensorRT/tree/main/samples/opensource/sampleNMT
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-visual-studio-edition/2020.1/nvtx/index.html

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 98

Decoding the kernel names back to layers in the original network can be complicated.
Because of this, TensorRT uses NVTX to mark a range for each layer, which then allows the
CUDA profilers to correlate each layer with the kernels called to implement it. In TensorRT,
NVTX helps to correlate the runtime engine layer execution with CUDA kernel calls. Nsight
Systems supports collecting and visualizing these events and ranges on the timeline. Nsight
Compute also supports collecting and displaying the state of all active NVTX domains and
ranges in a given thread when the application is suspended.

In TensorRT, each layer may launch one or more kernels to perform its operations. The exact
kernels launched depend on the optimized network and the hardware present. Depending
on the choices of the builder, there may be multiple additional operations that reorder data
interspersed with layer computations; these reformat operations may be implemented as
either device-to-device memory copies or as custom kernels.

For example, the following screenshots are from Nsight Systems.

Figure 15. The layer execution and the kernel being launched on the CPU
side.

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 99

Figure 16. The kernels actually run on the GPU, in other words, it shows
the correlation between the layer execution and kernel launch
on the CPU side and their execution on the GPU side.

Control the level of details in NVTX tracing

By default, TensorRT only shows layer names in the NVTX markers, while users can control
the level of details by setting the ProfilingVerbosity in the IBuilderConfig when the engine is
built. For example, to disable NVTX tracing, set the ProfilingVerbosity to kNONE:
C++

builderConfig->setProfilingVerbosity(ProfilingVerbosity::kNONE);

Python
builder_config.profilling_verbosity = trt.ProfilingVerbosity.NONE

On the other hand, you can choose to allow TensorRT to print more detailed layer information
in the NVTX markers, including input and output dimensions, operations, parameters, tactic
numbers, etc., by setting the ProfilingVerbosity to kDETAILED:
C++

builderConfig->setProfilingVerbosity(ProfilingVerbosity::kDETAILED);

Python
builder_config.profilling_verbosity = trt.ProfilingVerbosity.DETAILED

Run Nsight Systems with trtexec

Below is an example of the commands to gather Nsight Systems profiles using trtexec tool:

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 100

trtexec --onnx=foo.onnx --profilingVerbosity=detailed --saveEngine=foo.plan
nsys profile -o foo_profile trtexec --loadEngine=foo.plan --warmUp=0 --duration=0 --
iterations=50

The first command builds and serializes the engine to foo.plan, and the second command
runs the inference using foo.plan and generates a foo_profile.qdrep file which can then
be opened in the Nsight Systems GUI interface for visualization.

The --profilingVerbosity=detailed flag allows TensorRT to show more detailed layer
information in the NVTX marking, and the --warmUp=0 --duration=0 --iterations=50
flags allow you to control how many inference iterations to run. By default, trtexec runs
inference for three seconds, which may result in a very large output qdrep file.

13.1.5. Tracking Memory
Tracking memory usage can be as important as execution performance. Usually, the memory
will be more constrained on the device than on the host. To keep track of device memory, the
recommended mechanism is to create a simple custom GPU allocator that internally keeps
some statistics then uses the regular CUDA memory allocation functions cudaMalloc and
cudaFree.

A custom GPU allocator can be set for the builder IBuilder for network optimizations, and
for IRuntime when deserializing engines using the IGpuAllocator APIs. One idea for the
custom allocator is to keep track of the current amount of memory allocated, and to push an
allocation event with a timestamp and other information onto a global list of allocation events.
Looking through the list of allocation events allows profiling memory usage over time.

On mobile platforms, GPU memory and CPU memory share the system memory. On devices
with very limited memory size, like Nano, system memory might run out with large networks;
even the required GPU memory is smaller than system memory. In this case, increasing the
system swap size could solve some problems. An example script is:
echo "######alloc swap######"
if [! -e /swapfile];then
 sudo fallocate -l 4G /swapfile
 sudo chmod 600 /swapfile
 sudo mkswap /swapfile
 sudo /bin/sh -c 'echo "/swapfile \t none \t swap \t defaults \t 0 \t 0" >> /etc/fstab'
 sudo swapon -a
fi

13.2. Optimizing TensorRT Performance
The following sections focus on the general inference flow on GPUs and some of the general
strategies to improve performance. These ideas are applicable to most CUDA programmers
but may not be as obvious to developers coming from other backgrounds.

13.2.1. Batching
The most important optimization is to compute as many results in parallel as possible using
batching. In TensorRT, a batch is a collection of inputs that can all be processed uniformly.
Each instance in the batch has the same shape and flows through the network in exactly the
same way. Each instance can, therefore, be trivially computed in parallel.

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 101

Each layer of the network will have some amount of overhead and synchronization required
to compute forward inference. By computing more results in parallel, this overhead is
paid off more efficiently. In addition, many layers are performance-limited by the smallest
dimension in the input. If the batch size is one or small, this size can often be the performance
limiting dimension. For example, the FullyConnected layer with V inputs and K outputs can be
implemented for one batch instance as a matrix multiply of an 1xV matrix with a VxK weight
matrix. If N instances are batched, this becomes an NxV multiplied by the VxK matrix. The
vector-matrix multiplier becomes a matrix-matrix multiplier, which is much more efficient.

Larger batch sizes are almost always more efficient on the GPU. Extremely large batches,
such as N > 2^16, can sometimes require extended index computation and so should be
avoided if possible. But generally, increasing the batchsize improves total throughput. In
addition, when the network contains MatrixMultiply layers or FullyConnected layers, batch
sizes of multiples of 32 tend to have the best performance for FP16 and INT8 inference
because of the utilization of Tensor Cores, if the hardware supports them.

Sometimes batching inference work is not possible due to the organization of the application.
In some common applications, such as a server that does inference per request, it can be
possible to implement opportunistic batching. For each incoming request, wait for a time T.
If other requests come in during that time, batch them together. Otherwise, continue with
a single instance inference. This type of strategy adds fixed latency to each request but can
improve the maximum throughput of the system by orders of magnitude.

Using batching

If the explicit batch mode is used when the network is created, then the batch dimension is
part of the tensor dimensions, and you can specify the range of the batch sizes and the batch
size to optimize the engine for by adding optimization profiles. Refer to the Working With
Dynamic Shapes section for more details.

If the implicit batch mode is used when the network is created, the
IExecutionContext::execute (IExecutionContext.execute in Python) and
IExecutionContext::enqueue (IExecutionContext.execute_async in Python)
methods take an batch size parameter. The maximum batch size should also be set for
the builder when building the optimized network with IBuilder::setMaxBatchSize
(Builder.max_batch_size in Python). When calling IExecutionContext::execute or
enqueue, the bindings passed as the bindings parameter are organized per tensor and not
per instance. In other words, the data for one input instance is not grouped together into one
contiguous region of memory. Instead, each tensor binding is an array of instance data for that
tensor.

Another consideration is that building the optimized network optimizes for the given maximum
batch size. The final result will be tuned for the maximum batch size but will still work
correctly for any smaller batch size. It is possible to run multiple build operations to create
multiple optimized engines for different batch sizes, then choose which engine to use based on
the actual batch size at runtime.

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 102

13.2.2. Streaming
In general, CUDA programming streams are a way of organizing asynchronous work.
Asynchronous commands put into a stream are guaranteed to run in sequence but may
execute out of order with respect to other streams. In particular, asynchronous commands in
two streams may be scheduled to run concurrently (subject to hardware limitations).

In the context of TensorRT and inference, each layer of the optimized final network will
require work on the GPU. However, not all layers will be able to fully utilize the computation
capabilities of the hardware. Scheduling requests in separate streams allows work to
be scheduled immediately as the hardware becomes available without unnecessary
synchronization. Even if only some layers can be overlapped, overall performance will improve.

Using streaming

 1. Identify the batches of inferences that are independent.

 2. Create a single engine for the network.

 3. Create a CUDA stream using cudaStreamCreate for each independent batch and an
IExecutionContext for each independent batch.

 4. Launch inference work by requesting asynchronous results using
IExecutionContext::enqueue from the appropriate IExecutionContext and passing in
the appropriate stream.

 5. After all the work has been launched, synchronize with all the streams to wait for results.
The execution contexts and streams can be reused for later batches of independent work.

It is also possible to use multiple host threads with streams. A common pattern is incoming
requests dispatched to a pool of waiting for worker threads. In this case, the pool of worker
threads will each have one execution context and CUDA stream. Each thread will request work
in its own stream as the work becomes available. Each thread will synchronize with its stream
to wait for results without blocking other worker threads.

13.2.3. CUDA Graphs
CUDA graphs are a way to represent a sequence (or more generally a graph) of kernels in a
way that allows their scheduling to be optimized by CUDA. This can be particularly useful when
your application performance is sensitive to the CPU time taken to enqueue the kernels.

TensorRT’s enqueuev2() method supports CUDA graph capture for models which require no
CPU interaction mid-pipeline. For example:
C++

// Capture a CUDA graph instance
cudaGraph_t graph;
cudaGraphExec_t instance;
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
context->enqueueV2(buffers, stream, nullptr);
cudaStreamEndCapture(stream, &graph);
cudaGraphInstantiate(&instance, graph, NULL, NULL, 0);

// To run inferences:
cudaGraphLaunch(instance, stream);

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 103

cudaStreamSynchronize(stream);

Models for which graphs are not supported include those with loops or conditionals. In this
case, cudaStreamEndCapture() will return cudaErrorStreamCapture* errors, indicating
that the graph capturing has failed, but the context can continue to be used for normal
inference without CUDA graphs.

When capturing a graph, it’s important to account for the two-phase execution strategy used
in the presence of dynamic shapes.

 1. Update internal state of the model to account for any changes in input size
 2. Stream work to the GPU

For models where input size is fixed at build time, the first phase requires no per-invocation
work. Otherwise, if the input sizes have changed since the last invocation, some work may be
required to update derived properties.

The first phase of work is not designed to be captured, and even if the capture is successful
may increase model execution time. Therefore, after changing the shapes of inputs or the
values of shape tensors, call enqueuev2() once to flush deferred updates before capturing
the graph.

Graphs captured with TensorRT are specific to the input size for which they were
captured, and also to the state of the execution context. Modifying the context from
which the graph was captured will result in undefined behavior when executing the
graph - in particular, if the application is providing its own memory for activations via
createExecutionContextWithoutDeviceMemory(), the memory address is also captured
as part of the graph. Binding locations are also captured as part of the graph.

trtexec allows you to check whether the built TensorRT engine is compatible with CUDA
graph capture. Refer to the trtexec section for more information.

13.2.4. Enabling Fusion

13.2.4.1. Layer Fusion
TensorRT attempts to perform many different types of optimizations in a network during
the build phase. In the first phase, layers are fused together whenever possible. Fusions
transform the network into a simpler form but preserve the same overall behavior. Internally,
many layer implementations have extra parameters and options that are not directly
accessible when creating the network. Instead, the fusion optimization step detects supported
patterns of operations and fuses multiple layers into one layer with internal options set.

Consider the common case of a convolution followed by ReLU activation. To create a network
with these operations, it involves adding a Convolution layer with addConvolution, following
it with an Activation layer using addActivation with an ActivationType of kRELU. The
unoptimized graph will contain separate layers for convolution and activation. The internal
implementation of convolution supports computing the ReLU function on the output in one
step directly from the convolution kernel without requiring a second kernel call. The fusion
optimization step will detect the convolution followed by ReLU, verify that the operations are
supported by the implementation, then fuse them into one layer.

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 104

To investigate which fusions have happened, or have not happened, the builder logs its
operations to the logger object provided during construction. Optimization steps are at the
kINFO log level. To see these messages, ensure you log them in the ILogger callback.

Fusions are normally handled by creating a new layer with a name containing the names
of both of the layers which were fused. For example, in MNIST, a FullyConnected layer
(InnerProduct) named ip1 is fused with a ReLU Activation layer named relu1; to create a new
layer named ip1 + relu1.

13.2.4.2. Types Of Fusions
The following list describes the types of supported fusions.

Supported Layer Fusions
ReLU ReLU Activation

An Activation layer performing ReLU followed by an activation performing ReLU will be
replaced by a single activation layer.

Convolution and ReLU Activation
The Convolution layer can be of any type and there are no restrictions on values. The
Activation layer must be ReLU type.

Convolution and GELU Activation
The precision of input and output should be the same; with both of them FP16 or INT8. The
Activation layer must be GELU type. TensorRT should be running on a Turing or later device
with CUDA version 10.0 or later.

Convolution and Clip Activation
The Convolution layer can be any type and there are no restrictions on values. The
Activation layer must be Clip type.

Scale and Activation
The Scale layer followed by an Activation layer can be fused into a single Activation layer.

Convolution And ElementWise Operation
A Convolution layer followed by a simple sum, min, or max in an ElementWise layer can
be fused into the Convolution layer. The sum must not use broadcasting, unless the
broadcasting is across the batch size.

Padding and Convolution/Deconvolution
Padding followed by a Convolution or Deconvolution can be fused into a single Convolution/
Deconvolution layer if all the padding sizes are non-negative.

Shuffle and Reduce
A Shuffle layer without reshape, followed by a Reduce layer can be fused into a single
Reduce layer. The Shuffle layer can perform permutations but cannot perform any reshape
operation. The Reduce layer must have a keepDimensions set of dimensions.

Shuffle and Shuffle
Each Shuffle layer consists of a transpose, a reshape, and a second transpose. A Shuffle
layer followed by another Shuffle layer can be replaced by a single Shuffle (or nothing). If
both Shuffle layers perform reshape operations, this fusion is only allowed if the second
transpose of the first shuffle is the inverse of the first transpose of the second shuffle.

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 105

Scale
A Scale layer that adds 0, multiplied by 1, or computes powers to the 1 can be erased.

Convolution and Scale
A Convolution layer followed by a Scale layer that is kUNIFORM or kCHANNEL can be fused
into a single convolution by adjusting the convolution weights. This fusion is disabled if the
scale has a non-constant power parameter.

Reduce
A Reduce layer that performs average pooling will be replaced by a Pooling layer. The
Reduce layer must have a keepDimensions set, reduced across H and W dimensions from
CHW input format before batching, using the kAVG operation.

Convolution and Pooling
The Convolution and Pooling layers must have the same precision. The Convolution layer
may already have a fused activation operation from a previous fusion.

Depthwise Separable Convolution
A depthwise convolution with activation followed by a convolution with activation may
sometimes be fused into a single optimized DepSepConvolution layer. The precision of both
convolutions must be INT8 and the device computes capability must be 7.2 or later.

SoftMax and Log
It can be fused into a single Softmax layer if the SoftMax has not already been fused with a
previous log operation.

SoftMax and TopK
Can be fused into a single layer. The SoftMax may or may not include a Log operation.

FullyConnected
The FullyConnected layer will be converted into the Convolution layer, all fusions for
convolution will take effect.

Supported Reduction Operation Fusions
GELU

A group of Unary layerand ElementWise layer which represent the following equations can
be fused into a single GELU reduction operation.

Or the alternative representation:

L1Norm
A Unary layer kABS operation followed by a Reduce layer kSUM operation can be fused into a
single L1Norm reduction operation.

Sum of Squares
A product ElementWise layer with the same input (square operation) followed by a kSUM
reduction can be fused into a single square Sum reduction operation.

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 106

L2Norm
A sum of squares operation followed by a kSQRT UnaryOperation can be fused into a single
L2Norm reduction operation.

LogSum
A Reduce layer kSUM followed by a kLOG UnaryOperation can be fused into a single LogSum
reduction operation.

LogSumExp
A Unary kEXP ElementWise operation followed by a LogSum fusion can be fused into a
single LogSumExp reduction.

13.2.4.3. PointWise Fusion
Multiple adjacent PointWise layers can be fused into a single PointWise layer, to improve
performance.

The following types of PointWise layers are supported, with some limitations:
Activation

All ActivationType is supported.
Constant

Only constant with a single value (size == 1).
ElementWise

All ElementWiseOperation are supported.
PointWise

PointWise itself is also a PointWise layer.
Scale

Only support ScaleMode::kUNIFORM.
Unary

All UnaryOperation are supported.

The size of the fused PointWise layer is not unlimited, therefore, some PointWise layers may
not be fused.

Fusion creates a new layer with a name consisting of both of the layers which were fused.
For example, an ElementWise layer named add1 is fused with a ReLU Activation layer named
relu1 with a new layer name: fusedPointwiseNode(add1, relu1).

13.2.4.4. Q/DQ Fusion
Quantized INT8 graphs generated from QAT tools like NVIDIA's Quantization Toolkit for
PyTorch consists of onnx::QuantizeLinear and onnx::DequantizeLinear pair of nodes
(Q/DQ) with scales and zero-points. Starting in TensorRT 7.0, it’s required that zero_point is
0.

Q/DQ nodes help convert from FP32 values to INT8 and vice-versa. Such a graph would still
have weights and bias in FP32 precision.

Weights are followed by a Q/DQ node pair so that they can be quantized/dequantized if
required. Bias quantization is performed using scales from activations and weights, thus
no extra Q/DQ node pair is required for bias input. Assumption for bias quantization is that

.

https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization
https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 107

Fusions related to Q/DQ nodes include quantizing/dequantizing weights, commutating Q/DQ
nodes without changing the mathematical equivalence of the model, and erasing redundant Q/
DQ nodes. After applying Q/DQ fusions, the rest of the builder optimizations would be applied
to the graph.
Fuse Q/DQ with weighted node (Conv, FC, Deconv)

If we have a
[DequantizeLinear (Activations), DequantizeLinear (weights)] > Node >
 QuantizeLinear
([DQ, DQ] > Node > Q) sequence, then it is fused to the quantized node (QNode).

Supporting Q/DQ node pairs for weights requires weighted nodes to support more than
one input. Thus we support adding a second input (for weights tensor) and third input
(for bias tensor). Additional inputs can be set using setInput(index, tensor)API for
Convolution, Deconvolution and FullyConnected layers where index = 2 for weights tensor
and index = 3 for bias tensor.

During fusion with weighted nodes, we would quantize FP32 weights to INT8 and fuse it with
the corresponding weighted node. Similarly, FP32 bias would be quantized to INT32 and
fused.

Fuse Q/DQ with non-weighted node
If we have a DequantizeLinear > Node > QuantizeLinear (DQ > Node > Q) sequence,
then it is fused to the quantized node (QNode).

Commutate Q/DQ nodes

DequantizeLinear commutation is allowed when .
QuantizeLinear commutation is allowed when .

Also, commutation logic also accounts for available kernel implementations such that
mathematical equivalence is guaranteed.

Insert missing Q/DQ nodes
If a node has a missing Q/DQ nodes pair, and ; (for example,
MaxPool), missing Q/DQ pairs would be inserted to run more node with INT8 precision.

Erase redundant Q/DQ nodes
It’s possible that after applying all the optimizations, the graph still has Q/DQ node pairs
which are in itself a no-op. Q/DQ node erasure fusion would remove such redundant pairs.

13.3. Optimizing Layer Performance
The following descriptions detail how you can optimize the listed layers.
Concatenation Layer

If using an implicit batch dimension, the main consideration with the Concatenation layer is
that if multiple outputs are concatenated together, they can not be broadcasted across the
batch dimension and must be explicitly copied. Most layers support broadcasting across the
batch dimension to avoid copying data unnecessarily, but this will be disabled if the output
is concatenated with other tensors.

Gather Layer
To get the maximum performance out of a Gather layer, use an axis of 0. There are no
fusions available for a Gather layer.

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 108

Reduce Layer
To get the maximum performance out of a Reduce layer, perform the reduction across the
last dimensions (tail reduce). This allows optimal memory to read/write patterns through
sequential memory locations. If doing common reduction operations, express the reduction
in a way that will be fused to a single operation if possible.

RNN Layer

If possible, opt to use the newer RNNv2 interface in preference to the legacy RNN
interface. The newer interface supports variable sequence lengths and variable batch
sizes, as well as having a more consistent interface. To get maximum performance,
larger batch sizes are better. In general, sizes that are multiples of 64 achieve highest
performance. Bidirectional RNN-mode prevents wavefront propagation because of the
added dependency, therefore, it tends to be slower.

In addition, the newly introduced ILoop-based API provides a much more flexible
mechanism to use general layers within recurrence without being limited to a small set
of predefined RNNv2 interface. The ILoop recurrence enables a rich set of automatic
loop optimizations, including loop fusion, unrolling, and loop-invariant code motion, to
name a few. For example, significant performance gains are often obtained when multiple
instances of the same MatrixMultiply or FullyConnected layer are properly combined to
maximize machine utilization after loop unrolling along the sequence dimension. This
works best if you can avoid a MatrixMultiply or FullyConnected layer with a recurrent data
dependence along the sequence dimension.

Shuffle
Shuffle operations that are equivalent to identity operations on the underlying data are
omitted if the input tensor is only used in the shuffle layer and the input and output tensors
of this layer are not input and output tensors of the network. TensorRT does not execute
additional kernels or memory copies for such operations.

TopK
To get the maximum performance out of a TopK layer, use small values of K reducing the
last dimension of data to allow optimal sequential memory accesses. Reductions along
multiple dimensions at once can be simulated by using a Shuffle layer to reshape the data,
then reinterpreting the index values appropriately.

For more information about layers, refer to TensorRT Layers.

13.4. Optimizing for Tensor Cores
Tensor Core is a key technology to deliver high-performance inference on NVIDIA GPUs.
In TensorRT, Tensor Core operations are supported by all compute-intensive layers -
MatrixMultiply, FullyConnected, Convolution, and Deconvolution.

Tensor Core layers tend to achieve better performance if the input/output tensor dimensions
are aligned to a certain minimum granularity:

‣ In Convolution and Deconvolution layers the alignment requirement is on input/output
channel dimension

‣ In MatrixMultiply and FullyConnected layers the alignment requirement is on matrix
dimensions K and N in a MatrixMultiply that is M x K times K x N

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 109

The following table captures the suggested tensor dimension alignment for better Tensor Core
performance.

Table 4. Types of Tensor Cores

Tensor Core Operation Type
Suggested Tensor Dimension Alignment in
Elements

TF32 4

FP16 8 for dense math, 16 for sparse math

INT8 32

When using Tensor Core implementations in cases where these requirements are not met,
TensorRT implicitly pads the tensors to the nearest multiple of alignment rounding up the
dimensions in the model definition instead to allow for extra capacity in the model without
increasing computation or memory traffic.

TensorRT always uses the fastest implementation for a layer, and thus in some cases may not
use a Tensor Core implementation even if available.

13.5. Optimizing Plugins
TensorRT provides a mechanism for registering custom plugins that perform layer operations.
After a plugin creator is registered, you can look up the registry to find the creator and add the
corresponding plugin object to the network during serialization/deserialization.

All TensorRT plugins are automatically registered once the plugin library is loaded. For more
information about custom plugins, refer to Extending TensorRT With Custom Layers.

The performance of plugins depends on the CUDA code performing the plugin operation.
Standard CUDA best practices apply. When developing plugins, it can be helpful to start
with simple standalone CUDA applications that perform the plugin operation and verify
correctness. The plugin program can then be extended with performance measurements,
more unit testing, and alternate implementations. After the code is working and optimized, it
can be integrated as a plugin into TensorRT.

To get the best performance possible, it is important to support as many formats as possible
in the plugin. This removes the need for internal reformat operations during the execution of
the network. Refer to the Extending TensorRT With Custom Layers section for examples.

13.6. Optimizing Python Performance
When using the Python API, most of the same performance considerations apply. When
building engines, the builder optimization phase will normally be the performance bottleneck;
not API calls to construct the network. Inference time should be nearly identical between the
Python API and C++ API.

Setting up the input buffers in the Python API involves using pycuda or another CUDA Python
library, like cupy, to transfer the data from the host to device memory. The details of how this

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 110

works will depend on where the host data is coming from. Internally, pycuda supports the
Python Buffer Protocol which allows efficient access to memory regions. This means that if
the input data is available in a suitable format in numpy arrays or another type that also has
support for the buffer protocol, this allows efficient access and transfer to the GPU. For even
better performance, ensure that you allocate a page-locked buffer using pycuda and write
your final preprocessed input there.

For more information about using the Python API, refer to The Python API.

13.7. Improving Model Accuracy
TensorRT can execute a layer in FP32, FP16, or INT8 precision depending on the builder
configuration. By default, TensorRT chooses to run a layer in a precision which results in
optimal performance. Sometimes this can result in poor accuracy. Generally, running a layer
in higher precision helps improve accuracy with some performance hit.

There are several steps we can take to improve model accuracy:

 1. Validate layer outputs:

 a). Use Polygraphy to dump layer outputs and verify there are no NaNs or Infs. The --
validate option can check for NaNs and Infs. Also, we can compare layer outputs
with golden values from, for example, ONNX runtime.

 b). For FP16, it is possible that a model might require retraining to ensure that
intermediate layer output can be represented in FP16 precision without overflow/
underflow.

 c). For INT8, consider recalibrating with a more representative calibration data set. If your
model comes from PyTorch, we also provide NVIDIA's Quantization Toolkit for PyTorch
for QAT in the framework besides PTQ in TensorRT. You can try both approaches and
choose the one with more accuracy.

 2. Manipulate layer precision:

 a). Sometimes running a layer in certain precision results in incorrect output. This can
be due to inherent layer constraints (for example, LayerNorm output should not be
INT8), model constraints (output gets diverged resulting in poor accuracy), or report a
TensorRT bug.

 b). You can control layer execution precision and output precision.
 c). An experimental debug precision tool can help automatically find layers to run in high

precision.
 3. Use an Algorithm Selection and Reproducible Builds to disable flaky tactics:

 a). When accuracy changes between build+run to build+run, it might be due to a selection
of a bad tactic for a layer.

 b). Use an algorithm selector to dump tactics from both good and bad runs. Configure the
algorithm selector to allow only a subset of tactics (i.e. just allow tactics from a good
run etc).

 c). You can use Polygraphy to automate this process.

https://docs.python.org/3/c-api/buffer.html
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy/polygraphy/tools/debug
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy/examples/cli/debug/01_debugging_flaky_trt_tactics

Performance Best Practices

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 111

Accuracy from run-to-run variation should not change; once the engine is built for a specific
GPU, it should result in bit accurate outputs in multiple runs. If not, file a TensorRT bug.

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 112

Chapter 14. Troubleshooting

The following sections help answer the most commonly asked questions regarding typical use
cases with NVIDIA TensorRT.

14.1. FAQs
This section is to help troubleshoot the problem and answer our most asked questions.

Q: How do I create an engine that is optimized for several different batch sizes?

A: While TensorRT allows an engine optimized for a given batch size to run at any smaller
size, the performance for those smaller sizes can not be as well-optimized. To optimize for
multiple different batch sizes, create optimization profiles at the dimensions that are assigned
to OptProfilerSelector::kOPT.

Q: Are engines and calibration tables portable across TensorRT versions?

A: No. Internal implementations and formats are continually optimized and can change
between versions. For this reason, engines and calibration tables are not guaranteed to be
binary compatible with different versions of TensorRT. Applications must build new engines
and INT8 calibration tables when using a new version of TensorRT.

Q: How do I choose the optimal workspace size?

A: Some TensorRT algorithms require additional workspace on the GPU. The method
IBuilderConfig::setMemoryPoolLimit() controls the maximum amount of workspace
that can be allocated and prevents algorithms that require more workspace from being
considered by the builder. At runtime, the space is allocated automatically when creating an
IExecutionContext. The amount allocated is no more than is required, even if the amount
set in IBuilderConfig::setMemoryPoolLimit() is much higher. Applications should
therefore allow the TensorRT builder as much workspace as they can afford; at runtime,
TensorRT allocates no more than this and typically less.

Troubleshooting

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 113

Q: How do I use TensorRT on multiple GPUs?

A: Each ICudaEngine object is bound to a specific GPU when it is instantiated, either by the
builder or on deserialization. To select the GPU, use cudaSetDevice() before calling the
builder or deserializing the engine. Each IExecutionContext is bound to the same GPU as
the engine from which it was created. When calling execute() or enqueue(), ensure that the
thread is associated with the correct device by calling cudaSetDevice() if necessary.

Q: How do I get the version of TensorRT from the library file?

A: There is a symbol in the symbol table named tensorrt_version_⟨_⟨_⟨_⟨ which contains
the TensorRT version number. One possible way to read this symbol on Linux is to use the nm
command like in the following example:
$ nm -D libnvinfer.so.* | grep tensorrt_version
00000000abcd1234 B tensorrt_version_#_#_#_#

Q: What can I do if my network is producing the wrong answer?

A: There are several reasons why your network can be generating incorrect answers. Here are
some troubleshooting approaches which can help diagnose the problem:

‣ Turn on VERBOSE level messages from the log stream and check what TensorRT is
reporting.

‣ Check that your input preprocessing is generating exactly the input format required by the
network.

‣ If you’re using reduced precision, run the network in FP32. If it produces the correct result,
it is possible that lower precision has an insufficient dynamic range for the network.

‣ Try marking intermediate tensors in the network as outputs, and verify if they match what
you are expecting.

Note: Marking tensors as outputs can inhibit optimizations, and therefore, can change the
results.

You can use Polygraphy to assist you with debugging and diagnosis.

Q: How do I implement batch normalization in TensorRT?

A: Batch normalization can be implemented using a sequence of IElementWiseLayer in
TensorRT. More specifically:
adjustedScale = scale / sqrt(variance + epsilon)
batchNorm = (input + bias - (adjustedScale * mean)) * adjustedScale

https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy

Troubleshooting

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 114

Q: Why does my network run slower when using DLA compared to without
DLA?

A: DLA was designed to maximize energy efficiency. Depending on the features supported by
DLA and the features supported by the GPU, either implementation can be more performant.
Which implementation to use depends on your latency or throughput requirements and your
power budget. Since all DLA engines are independent of the GPU and each other, you could
also use both implementations at the same time to further increase the throughput of your
network.

Q: Is INT4 quantization or INT16 quantization supported by TensorRT?

A: Neither INT4 nor INT16 quantization is supported by TensorRT at this time.

Q: When will TensorRT support layer XYZ required by my network in the UFF
parser?

A: UFF is deprecated. We recommend users switch their workflows to ONNX. The TensorRT
ONNX parser is an open source project.

Q: Can I use multiple TensorRT builders to compile on different targets?

A: TensorRT assumes that all resources for the device it is building on are available for
optimization purposes. Concurrent use of multiple TensorRT builders (for example, multiple
trtexec instances) to compile on different targets (DLA0, DLA1 and GPU) can oversubscribe
system resources causing undefined behavior (meaning, inefficient plans, builder failure, or
system instability).

It is recommended to use trtexec with the --saveEngine argument to compile for different
targets (DLA and GPU) separately and save their plan files. Such plan files can then be reused
for loading (using trtexec with the --loadEngine argument) and submitting multiple
inference jobs on the respective targets (DLA0, DLA1, GPU). This two-step process alleviates
over-subscription of system resources during the build phase while also allowing execution of
the plan file to proceed without interference by the builder.

Q: Which layers are accelerated by Tensor Cores?

Most math-bound operations will be accelerated with tensor cores - convolution,
deconvolution, fully connected, and matrix multiply. In some cases, particularly for small
channel counts or small group sizes, another implementation may be faster and be selected
instead of a tensor core implementation.

Troubleshooting

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 115

14.2. Understanding Error Messages
If an error is encountered during execution, TensorRT reports an error message that is
intended to help in debugging the problem. Some common error messages that can be
encountered by developers are discussed in the following sections.

UFF Parser Error Messages

The following table captures the common UFF parser error messages.

Error Message Description
The input to the Scale Layer is required to
 have a minimum of 3 dimensions.

Invalid scale mode, nbWeights: <X>

kernel weights has count <X> but <Y> was
 expected

This error message can occur due to incorrect
input dimensions. In UFF, input dimensions
should always be specified with the implicit batch
dimension not included in the specification.

<NODE> Axis node has op <OP>, expected
 Const. The axis must be specified as a
 Const node.

As indicated by the error message, the axis must
be a build-time constant in order for UFF to parse
the node correctly.

ONNX Parser Error Messages

The following table captures the common ONNX parser error messages. For more information
on specific ONNX node support, refer to the operators support document.

Error Message Description

<X> must be an initializer!

!inputs.at(X).is_weights()

These error messages signify that an ONNX node
input tensor is expected to be an initializer in
TensorRT. A possible fix is to run constant folding
on the model using TensorRT’s Polygraphy tool:
polygraphy surgeon sanitize model.onnx --
fold-constants --output model_folded.onnx

getPluginCreator() could not find Plugin
 <operator name> version
 1

This is an error stating that the ONNX parser
does not have an import function defined
for a particular operator, and did not find a
corresponding plugin in the loaded registry for the
operator.

TensorRT Core Library Error Messages

The following table captures the common TensorRT core library error messages.

Error Message Description

Installation Errors Cuda initialization

failure with error

This error message can occur
if the CUDA or NVIDIA driver

https://github.com/onnx/onnx-tensorrt/blob/main/docs/operators.md
https://github.com/NVIDIA/TensorRT/tree/main/tools/Polygraphy

Troubleshooting

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 116

Error Message Description
<code>. Please check cuda

installation: http://

docs.nvidia.com/cuda/cuda-

installation-guide-linux/

index.html.

installation is corrupt. Refer
to the URL for instructions on
installing CUDA and the NVIDIA
driver on your operating system.

Internal error: could not
 find any implementation
 for node <name>.
 Try increasing the
 workspace size with
 IBuilderConfig::setMemoryPoolLimit().

This error message occurs
because there is no layer
implementation for the given
node in the network that
can operate with the given
workspace size. This usually
occurs because the workspace
size is insufficient but could also
indicate a bug. If increasing the
workspace size as suggested
doesn’t help, report a bug (refer
to How Do I Report A Bug?).

<layer-name>: (kernel|

bias) weights has non-zero

count but null values

<layer-name>: (kernel|
bias) weights has zero
 count but non-null
 values

This error message occurs when
there is a mismatch between
the values and count fields in a
Weights data structure passed
to the builder. If the count is
0, then the values field must
contain a null pointer; otherwise,
the count must be non-zero, and
values must contain a non-null
pointer.

Builder Errors

Builder was created on

device different from

current device.

This error message can show up
if you:

 1. Created an IBuilder
targeting one GPU, then

 2. Called cudaSetDevice() to
target a different GPU, then

 3. Attempted to use the
IBuilder to create an engine.

Ensure you only use the
IBuilder when targeting the
GPU that was used to create the
IBuilder.

http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#bug-reporting

Troubleshooting

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 117

Error Message Description

You can encounter error messages indicating that the tensor
dimensions do not match the semantics of the given layer.
Carefully read the documentation on NvInfer.h on the usage of each
layer and the expected dimensions of the tensor inputs and outputs
to the layer.

INT8 Calibration Errors Tensor <X> is uniformly zero. This warning occurs and should
be treated as an error when
data distribution for a tensor is
uniformly zero. In a network,
the output tensor distribution
can be uniformly zero under the
following scenarios:

 1. Constant tensor with all zero
values; not an error.

 2. Activation (ReLU) output
with all negative inputs: not
an error.

 3. Data distribution is forced to
all zero due to computation
error in the previous layer;
emit a warning here.1

 4. User does not provide any
calibration images; emit a
warning here.1

Could not find scales for
 tensor <X>.

This error message indicates
that a calibration failure
occurred with no scaling
factors detected. This could
be due to no INT8 calibrator
or insufficient custom scales
for network layers. For more
information, refer to sampleINT8
located in the opensource/
sampleINT8 directory in the
GitHub repository to set up
calibration correctly.

The engine plan file is not
 compatible with this version
 of TensorRT, expecting

This error message can occur
if you are running TensorRT

1 It is recommended to evaluate the calibration input or validate the previous layer outputs.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/namespacenvinfer1.html
https://github.com/NVIDIA/TensorRT/tree/main/samples/opensource/sampleINT8

Troubleshooting

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 118

Error Message Description
 (format|library) version <X>
 got <Y>, please rebuild.

using an engine PLAN file that
is incompatible with the current
version of TensorRT. Ensure
you use the same version of
TensorRT when generating the
engine and running it.

The engine plan file is
 generated on an incompatible
 device, expecting compute
 <X> got compute <Y>, please
 rebuild.

This error message can occur if
you build an engine on a device
of a different compute capability
than the device that is used to
run the engine.

Using an engine plan file
 across different models of
 devices is not recommended
 and is likely to affect
 performance or even cause
 errors.

This warning message can
occur if you build an engine on
a device with the same compute
capability but is not identical to
the device that is used to run the
engine.

As indicated by the warning,
it is highly recommended
to use a device of the same
model when generating the
engine and deploying it to avoid
compatibility issues.

GPU memory allocation failed
 during initialization of
 (tensor|layer): <name>
GPU memory

Allocation failed during
 deserialization of weights.

GPU does not meet the minimum
 memory requirements to run
 this engine …

These error messages can
occur if there is insufficient GPU
memory available to instantiate
a given TensorRT engine. Verify
that the GPU has sufficient
available memory to contain
the required layer weights and
activation tensors.

Network needs native FP16
 and platform does not have
 native FP16

This error message can occur
if you attempt to deserialize
an engine that uses FP16
arithmetic on a GPU that does
not support FP16 arithmetic. You
either need to rebuild the engine
without FP16 precision inference
or upgrade your GPU to a model

Troubleshooting

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 119

Error Message Description
that supports FP16 precision
inference.

Custom layer <name> returned
 non-zero initialization

This error message can occur
if the initialize() method
of a given plugin layer returns
a non-zero value. Refer to the
implementation of that layer
to debug this error further.
For more information, refer to
TensorRT Layers.

14.3. Code Analysis Tools

14.3.1. Compiler Sanitizers
Google sanitizers are a set of code analysis tools.

14.3.1.1. Issues With dlopen And Address Sanitizer
There is a known issue with sanitizers, documented here. When using dlopen on TensorRT
under a sanitizer, there will be reports of memory leaks unless one of two solutions is
adopted:

 1. Do not call dlclose when running under the sanitizers.
 2. Pass the flag RTLD_NODELETE to dlopen when running under sanitizers.

14.3.1.2. Issues With dlopen And Thread Sanitizer
The thread sanitizer can list errors when using dlopen from multiple threads. In order to
suppress this warning, create a file called tsan.supp and add the following to the file:
race::dlopen

When running applications under thread sanitizer, set the environment variable using:
export TSAN_OPTIONS=”suppressions=tsan.supp”

14.3.1.3. Issues With CUDA And Address Sanitizer
The address sanitizer has a known issue with CUDA applications documented here. In order to
successfully run CUDA libraries such as TensorRT under the address sanitizer, add the option
protect_shadow_gap=0 to the ASAN_OPTIONS environment variable.

On CUDA 11.4, there is a known bug which can trigger mismatched allocation-and-free errors
in the address sanitizer. Add alloc_dealloc_mismatch=0 to ASAN_OPTIONS to disable these
errors.

https://github.com/google/sanitizers
https://github.com/google/sanitizers/issues/89
https://github.com/google/sanitizers/issues/629

Troubleshooting

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 120

14.3.2. Valgrind
Valgrindis a framework for dynamic analysis tools which can be used to automatically detect
memory management and threading bugs in applications.

Some versions of valgrind and glibc are affected by a bug which causes false memory leaks
to be reported when dlopen is used, which can generate spurious errors when running a
TensorRT application under valgrind's memcheck tool. To work around this, add the following
to a valgrind suppressions file as documented here:
{
 Memory leak errors with dlopen
 Memcheck:Leak
 match-leak-kinds: definite
 ...
 fun:*dlopen*
 ...
}

On CUDA 11.4, there is a known bug which can trigger mismatched allocation-and-free errors
in valgrind. Add the option --show-mismatched-frees=no to the valgrind command line to
suppress these errors.

https://www.valgrind.org/
https://stackoverflow.com/questions/1542457/memory-leak-reported-by-valgrind-in-dlopen
https://valgrind.org/docs/manual/manual-core.html#manual-core.suppress

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 121

Appendix A. Appendix

A.1. TensorRT Layers
In TensorRT, layers represent distinct flavors of mathematical and/or programmatic
operations. The following sections describe every layer that TensorRT supports. The minimum
workspace required by TensorRT depends on the operators used by the network. A suggested
minimum build-time setting is 16 MB. Regardless of the maximum workspace value provided
to the builder, TensorRT will allocate at runtime no more than the workspace it requires. To
view a list of the specific attributes supported by each layer, refer to the NVIDIA TensorRT API
Reference documentation.

TensorRT can optimize performance by fusing layers. For information about how to enable
layer fusion optimizations, refer to Types Of Fusions. For information about optimizing
individual layer performance, refer to Optimizing Layer Performance.

For details about the types of precision and features supported per layer, refer to the NVIDIA
TensorRT Support Matrix.

A.1.1. IActivationLayer
The IActivationLayer implements element-wise activation functions.

Layer Description

Apply an activation function on an input tensor A, and produce an output tensor B with the
same dimensions.

The Activation layer supports the following operations:
rectified Linear Unit (ReLU): B = ReLU(A)
Hyperbolic tangent: B = tanh(A)
“s” shaped curve (sigmoid): B = σ(A)

Conditions And Limitations

None

Refer to the C++ class IActivationLayer or the Python class IActivationLayer for further
details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-support-matrix/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_activation_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iactivationlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 122

A.1.2. IAssertionLayer
The IAssertionLayer causes the builder or runtime to report an error if its input tensor
contains any false values.

Layer Description

The layer has a single boolean input tensor and no outputs. The input tensor must be a shape
tensor. If the builder can prove that any element is always false at build time, a build-time
error is reported. Otherwise, the tensor is evaluated at runtime, and if any element is false, an
error is reported.

Asserting equality of input dimensions may help the optimizer. For example, if a network
has two inputs whose leading dimensions must be equal, extracting those dimensions with
IGatherLayer (or ISliceLayer), comparing them with ElementWiseOperation::kEQUAL,
and feeding the output to an IAssertionLayer lets TensorRT know the dimension must be
equal.

Conditions And Limitations

The input tensor must be a boolean shape tensor.

Refer to the C++ class IAssertionLayer or the Python class IAssertionLayer for further
details.

A.1.3. IConcatenationLayer
The IConcatenationLayer links together multiple tensors of the same non-channel sizes
along the channel dimension.

Layer Description

The concatenation layer is passed in an array of m input tensors Ai and a channel axis c.

All dimensions of all input tensors must match in every axis except axis c. Let each input
tensor have dimensions ai. The concatenated output tensor will have dimensions b such that

.

Conditions And Limitations

The default channel axis is assumed to be the third from the last axis or the first non-batch
axis if there are fewer than three non-batch axes. Concatenation cannot be done along the
batch axis when the implicit batch dimension mode is used. All input tensors must be non-
INT32 type, or all must be INT32 type.

Refer to the C++ class IConcatenationLayer or the Python class IConcatenationLayer for
further details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_assertion_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iassertionlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_concatenation_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconcatenationlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 123

A.1.4. IConditionLayer
An IConditionLayer represents the condition boundary associated with a Conditional
construct. It is created by TensorRT when using IIfConditional::setCondition. An if-
conditional is defined by conditional boundary layers.

Layer Description

An IConditionLayer has exactly one input which accepts a boolean tensor that controls the
evaluation flow of the Conditional associated with this IConditionLayer.

Conditions And Limitations

The input to IConditionLayer must be a boolean scalar (zero-dimensional tensor).

Refer to the C++ class IConditionLayer or the Python class IConditionLayer for further
details.

A.1.5. IConstantLayer
The IConstantLayer outputs a tensor with values provided as parameters to this layer,
enabling the convenient use of constants in computations.

Layer Description

Given dimensions d and weight vector w, the constant layer will output a tensor B of
dimensions d with the constant values in w. This layer takes no input tensor. The number of
elements in the weight vector w is equal to the volume of d.

Conditions And Limitations

The output can be a tensor of zero to seven dimensions. Boolean weights are not supported.

Refer to the C++ class IConstantLayer or the Python class IConstantLayer for further
details.

A.1.6. IConvolutionLayer
The IConvolutionLayer computes a 2D (channel, height, and width) convolution or 3D
(channel, depth, height, and width) convolution, with or without bias.

Note: The operation that the IConvolutionLayer performs is actually a correlation.
Therefore, it is a consideration if you are formatting weights to import via an API rather than via
the parsers.

Layer Description: 2D convolution

Compute a cross-correlation with 2D filters on a 4D tensor A, of dimensions a, to produce a 4D
tensor B, of dimensions b. The dimensions of B depend on the dimensions of A, the number of

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_condition_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconditionlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_constant_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconstantlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 124

output maps m, kernel size k, symmetric padding p, stride s, dilation d, and dilated kernel size

, such that height and width are adjusted accordingly as follows:

‣
‣

‣

The kernel weights w and bias weights x (optional) for the number of groups g are such that:

‣ w is ordered according to shape

‣ x has length m

Let tensor K with dimensions be defined as the zero-filled tensor, such that:

‣
‣
‣

and tensor C the zero-padded copy of A with dimensions , then tensor B is

defined as where and .

Layer Description: 3D convolution

Compute a cross-correlation with 3D filters on a 5D tensor A, of dimensions a, to produce a 5D
tensor B, of dimensions b. The dimensions of B depend on the dimensions of A, the number of
output maps m, kernel size k, symmetric padding p, stride s, dilation d, and dilated kernel size

, such that height and width are adjusted accordingly as follows:

‣
‣

‣

‣

The kernel weights w and bias weights x (optional) for the number of groups g, are such that:

‣ w is ordered according to shape

‣ x has length m

Let tensor K with dimensions be defined as the zero-filled tensor, such
that:

‣

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 125

‣
‣
‣

and tensor C the zero-padded copy of A with dimensions , then tensor

B is defined as where , , and
.

Conditions And Limitations

The number of input kernel dimensions determine 2D or 3D. For 2D convolution, input
and output may have more than four dimensions; beyond four, all dimensions are treated
as multipliers on the batch size, and input and output are treated as 4D tensors. For 3D
convolution, similar to 2D convolution, if input or output has more than 5 dimensions, all
dimensions beyond five are treated as multipliers on the batch size. If groups are specified and
INT8 data type is used, then the size of the groups must be a multiple of four for both input and
output.

Empty Tensors

Convolution with zero input channels (for example, [n, 0, h, w]) results in a tensor of zeros
with dimensions [n, k, p, q], before adding the bias, because each element of the result is
a sum over an empty set of products.

Refer to the C++ class IConvolutionLayer or the Python class IConvolutionLayer for
further details.

A.1.7. IDeconvolutionLayer
The IDeconvolutionLayer computes a 2D (channel, height, and width) or 3D (channel, depth,
height and width) deconvolution, with or without bias.

Note: This layer actually applies a 2D/3D transposed convolution operator over a 2D/3D input. It
is also known as fractionally-strided convolution or transposed convolution.

Layer Description: 2D deconvolution

Compute a cross-correlation with 2D filters on a 4D tensor A, of dimensions a, to produce a 4D
tensor B, of dimensions b. The dimensions of B depend on the dimensions of A, the number of
output maps m, kernel size k, symmetric padding p, stride s, dilation d, and dilated kernel size

, such that height and width are adjusted accordingly as follows:

‣
‣

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_convolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iconvolutionlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 126

‣

The kernel weights w and bias weights x (optional) for the number of groups g, are such that:

‣ w is ordered according to shape

‣ x has length m

Let tensor K with dimensions be defined as the zero-filled tensor, such that:

‣
‣
‣

and tensor C the zero-padded copy of A with dimensions , then tensor B is

defined as where u ranges from 0 to , and v ranges

from 0 to .

Layer Description: 3D deconvolution

Compute a cross-correlation with 3D filters on a 5D tensor A, of dimensions a, to produce a 5D
tensor B, of dimensions b. The dimensions of B depend on the dimensions of A, the number of
output maps m, kernel size k, symmetric padding p, stride s, dilation d, and dilated kernel size

, such that height and width are adjusted accordingly as follows:

‣
‣

‣

‣

The kernel weights w and bias weights x (optional) for the number of groups g, are such that:

‣ w is ordered according to shape

‣ x has length m

Let tensor K with dimensions be defined as the zero-filled tensor, such
that:

‣
‣
‣
‣

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 127

and tensor C the zero-padded copy of A with dimensions , then tensor

B is defined as where u ranges from 0 to , and

v ranges from 0 to , and w ranges from 0 to .

Conditions And Limitations

2D or 3D is determined by the number of input kernel dimensions. For 2D deconvolution,
input and output may have more than 4 dimensions; beyond 4, all dimensions are treated
as multipliers on the batch size, and input and output are treated as 4D tensors. For 3D
deconvolution, similar to 2D deconvolution, dimensions beyond 5 are treated as multipliers on
the batch size. If groups are specified and INT8 data type is used, then the size of the groups
must be a multiple of 4 for both input and output.

Refer to the C++ class IDeconvolutionLayer or the Python class IDeconvolutionLayer for
further details.

A.1.8. IDequantizeLayer
The IDequantizeLayer implements dequantization operators.

Layer Description

The IDequantizeLayer layer accepts a signed 8-bit integer input tensor, and uses the
configured scale and zero-point inputs to dequantize the input according to:
output = (input - zeroPt) * scale

The first input (index 0) is the tensor to be quantized. The second input (index 1), and third
input (index 2), are the scale and zero-point respectively.

Refer to the C++ class IDequantizeLayer or the Python class IDequantizeLayer for further
details.

A.1.9. IEinsumLayer
The IEinsumLayer implements an Einsum operator.

Layer Description

The IEinsumLayer implements a summation over the elements of the inputs along
dimensions specified by the equation parameter, based on the Einstein summation convention.

‣ The equation specifies ASCII lower-case letters for each dimension in the inputs in the
same order as the dimensions, separated by a comma for each input.

‣ The equation is represented as term1,term2…->output-term where each term
corresponds to an operand tensor and the characters within the terms correspond to
operands dimensions.

‣ The dimensions labeled with the same subscript must match.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_deconvolution_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ideconvolutionlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_dequantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#idequantizelayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 128

‣ Repeated subscript labels in one input take the diagonal.

‣ Repeating a label across multiple inputs means that those axes will be multiplied

‣ Omitting a label from the output means values along those axes will be summed.

‣ The output subscripts must appear at least once for some input operand and at most once
for the output.

‣ In implicit mode, i.e. if the equation does not contain ->, the indices which appear once in
the expression will be part of the output in increasing alphabetical order.

‣ In explicit mode, the output can be controlled by specifying output subscript labels by
adding an arrow (->) followed by subscripts for the output. For example, ij,jk->ik is
equivalent to ij,jk.

‣ An empty string ("") is valid for scalar operands.

‣ The equation may contain spaces (SPC- 0x20) between the different elements (subscripts,
ellipsis, arrow and comma).

Conditions And Limitations

TensorRT does not support ellipsis, diagonal operations, or more than two inputs for Einsum.
All the inputs must be of the same data type and that data type must be DataType::kFLOAT or
DataType::kHALF.

Refer to the C++ class IEinsumLayer or the Python class IEinsumLayer for further details.

A.1.10. IElementWiseLayer
The IElementWiseLayer, also known as the Eltwise layer, implements per-element
operations.

Layer Description

This layer computes a per-element binary operation between input tensor A and input tensor
B to produce an output tensor C. For each dimension, their lengths must match, or one of
them must be one. In the latter case, the tensor is broadcast along that axis. The output tensor
has the same number of dimensions as the inputs. The output tensor has the same number
of dimensions as the inputs. For each output dimension, its length is equal to the lengths of
the corresponding input dimensions if they match; otherwise, it is equal to the corresponding
input dimension that is not one.

The IElementWiseLayer supports the following operations:
Sum: C = A+B
Product: C = A*B
Minimum: C = min(A, B)
Maximum: C = max(A, B)
Subtraction: C = A-B
Division: C = A/B
Power: C = A^B
Floor division : C = floor(A/B)
And : C = A & B
Or : C = A | B
Xor : C = A xor B

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_einsum_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ieinsumlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 129

Equal : C = (A == B)
Greater : C = A > B
Less: C = A < B

Conditions And Limitations

The length of each dimension of the two input tensors A and B must be equal or equal to one.

Refer to the C++ class IElementWiseLayer or the Python class IElementWiseLayer for
further details.

A.1.10.1. ElementWise Layer Setup
The ElementWise layer is used to execute the second step of the functionality provided by a
FullyConnected layer. The output of the fcbias Constant layer and Matrix Multiplication layer
are used as inputs to the ElementWise layer. The output from this layer is then supplied to the
TopK layer. The code below demonstrates how to setup the layer:
auto fcbias = network->addConstant(Dims2(VOCAB_SIZE, 1), weightMap[FCB_NAME]);
auto addBiasLayer = network->addElementWise(
*matrixMultLayer->getOutput(0),
*fcbias->getOutput(0), ElementWiseOperation::kSUM);
assert(addBiasLayer != nullptr);
addBiasLayer->getOutput(0)->setName("Add Bias output");

For more information, refer to the NVIDIA TensorRT API Reference.

A.1.11. IFillLayer
The IFillLayer is used to generate an output tensor with the specified mode.

Layer Description

Given an output tensor size, the layer will generate data with the specified mode and fill the
tensor. The alpha and beta perform as different parameters for different modes.

The IFillLayer supports the following operations:

‣ LINSPACE: Output = alpha(scalar) + beta(different on each axis) *
element_index

‣ RANDOM_UNIFORM: Output = Random(min = alpha, max = beta)

Conditions And Limitations

The layer can only generate a 1D tensor if using static tensor size. When using the dynamic
tensor size, the dimensions for alpha and beta should match each mode’s requirement.

Refer to the C++ class IFillLayer or the Python class IFillLayer for further details.

A.1.12. IFullyConnectedLayer
The IFullyConnectedLayer implements a matrix-vector product, with or without bias.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_element_wise_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ielementwiselayer
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fill_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Plugin/IPluginV2Ext.html

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 130

Layer Description

The IFullyConnectedLayer expects an input tensor A of three or more dimensions. Given

an input tensor A of dimensions , it is first reshaped into a tensor A’ of dimensions

 by squeezing the last three dimensions into one dimension.

Then, the layer performs the operation where W is the weight tensor of dimensions

, X is the bias tensor of dimensions broadcasted along the other
dimensions, and k is the number of output channels, configured via setNbOutputChannels().
If X is not specified, the value of the bias is implicitly 0. The resulting B’ is a tensor of

dimensions .

Finally, B’ is reshaped again into the output tensor B of dimensions by
inserting two lower dimensions each of size 1.

In summary, for input tensor A of dimensions , the output tensor B will have

dimensions .

Conditions And Limitations

A must have three dimensions or more.

Refer to the C++ class IFullyConnectedLayer or the Python class IFullyConnectedLayer
for further details.

A.1.13. IGatherLayer
The IGatherLayer implements three variants of the gather operation.

Layer Description

Default Gather Mode: The kDEFAULT mode of IGatherLayer gathers elements of each
data tensor A along the specified axisxusing indices tensor B of zero dimensions or more
dimensions to produce output tensor C of dimensions c.

If B has zero dimensions and it is a scalar b, then
and c has a length equal to one less than the length of a. In this case, where

.

If B is a tensor of dimensions b (with length b), then

. In this case, where

 and .

GatherND Mode: The GatherMode::kND mode of IGatherLayer gathers elements of the
data tensor A of dimension a using indices tensor B of dimension b to produce output C of
dimension c.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html#a7a268ddbb5c40ac1c35b872a3f08278b
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_fully_connected_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ifullyconnectedlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 131

Let us denote the shape of the input tensors as follows:

. Let us denote the number of elementwise dims

as n. Then, .

 1. If

 a).

 b).

 2. If

 a).

 b).

 c). where is a tensor with k dimensions, and .

 3. If

 a). This is a build time error.

GatherElements Mode: The GatherMode::kELEMENT mode of IGatherLayer gathers
elements of the data tensor A of dimension a on a specified axis using indices tensor B of
dimension b to produce output C of dimension c.

The output C has . The following pseudocode illustrates how C is
computed.
For each element X of B:
Let J denote a sequence for the subscripts of X
Let K = sequence J with element [axis] replaced by X
C[J] = A[K]

Conditions And Limitations

‣ The indices tensor B must contain only INT32 values.

‣ If there are any invalid indices elements in the indices tensor, then zeros will be stored at
the appropriate locations in the output tensor.

‣ If an axis of the data tensor A has a dynamic length, using a negative index for it has
undefined behavior.

Default Gather Mode: Applicable to implicit batch mode:

‣ Elements cannot be gathered along the batch size dimension.

‣ The data tensor A must contain at least one non-batch dimension.

‣ The data tensor A must contain at least axis + 1 non-batch dimensions.

‣ The parameter axis is zero-indexed and starts at the first non-batch dimension of data
tensor A.

Applicable to explicit batch mode:

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 132

‣ The data tensor A must contain at least one dimension.

‣ The data tensor A must contain at least axis + 1 dimensions.

‣ The parameter axis is zero-indexed and starts at the first dimension of data tensor A.

‣ axis must be larger than or equal to the number of element-wise dimensions set by
IGatherLayer::setNbElementWiseDimensions().

‣ The number of ElementWise dimensions can only be set to 0 or 1.

‣ If the number of ElementWise dimensions is set to 1, the behavior will be similar to
implicit batch mode. The leading dimension will be treated like batch dimension in implicit
batch mode, which is not part of the gather operation. For example, data tensor A has
dimensions of [N, C, H, W], and indices tensor B has the dimensions of [N, K]. If
nbElementWiseDimensions is 1 and the axis is set to 1, the dimensions of the result
will be [N, K, H, W]. If nbElementWiseDimensions is 0 and the axis is set to 1, the
dimensions of the result will be [N, N, K, H, W].

‣ ElementWise dimensions support broadcasts like IElementWiseLayer.

GatherND Mode:

‣ The data tensor A must contain at least one dimension.

‣ The indices tensor B must contain at least one dimension.

‣ The first n dimensions of A and B must be the equal, where n is the number of elementwise
dimensions.

‣ n must be less than both the number of dimensions of A and the number of dimensions of
B.

‣ The innermost dimension of B should have a value between 1 and a-n, inclusive.

GatherElements Mode:

‣ The data tensor A must contain at least one dimension.

‣ The indices tensor B must contain at least one dimension.

‣ axis must be between 0 and a-1, inclusive.

Refer to the C++ class IGatherLayer or the Python class IGatherLayer for further details.

A.1.14. IIdentityLayer
The IIdentityLayer implements the identity operation.

Layer Description

The output of the layer is mathematically identical to the input. This layer allows you to
precisely control the precision of tensors and transform from one precision to another. If the
input is at a different precision than the output, the layer will convert the input tensor into the
output precision.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_gather_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#igatherlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 133

Conditions And Limitations

None

Refer to the C++ class IIdentityLayer or the Python class IIdentityLayer for further
details.

A.1.15. IIfConditionalBoundaryLayer
IIfConditionalBoundaryLayer is the base class for the if-conditional-related
layers, specifically IConditionLayer, IIfConditionalOutputLayer, and
IIfConditionalInputLayer. An if-conditional is defined by conditional boundary layers.

Layer Description

Class IIfConditionalBoundaryLayer defines a virtual method getConditional() that
returns a pointer to the associated IIfConditional.

Conditions And Limitations

None

For more information about the IIfConditionalBoundaryLayer , including how conditionals
work and their limitations, refer to Working With Conditionals.

A.1.16. IIfConditionalOutputLayer
The IfConditionalOutputLayer specifies an output from an if-conditional. An if-conditional
is defined by conditional boundary layers.

Layer Description

An if-conditional must have one or more outputs, each defined by a unique instance of
IfConditionalOutputLayer. An IfConditionalOutputLayer has exactly two inputs, one
from the true-branch (then-branch) and one from the false-branch (else-branch). When an if-
conditional executes an IfConditionalOutputLayer it chooses which of the two inputs to
copy to the output depending on the value of the condition associated with the if-conditional.

Conditions And Limitations

Must have exactly two inputs and one output.

For more information about the IfConditionalOutputLayer, including how conditionals
work and their limitations, refer to Working With Conditionals.

A.1.17. IIfConditionalInputLayer
The IfConditionalInputLayer specifies an input to an if-conditional. An if-conditional is
defined by conditional boundary layers.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_identity_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iidentitylayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 134

Layer Description

The IfConditionalInputLayer is a placeholder for an input to an if-conditional that can
be used by either or both of the if-conditional’s branches. An IfConditionalInputLayer
demarcates the input boundary of an if-conditional.

Conditions And Limitations

Must have exactly one input and one output.

For more information about the IfConditionalOutputLayer, including how conditionals
work and their limitations, refer to Working With Conditionals.

A.1.18. IIteratorLayer
The IIteratorLayer enables a loop to iterate over a tensor. A loop is defined by loop boundary
layers.

For more information about the IIteratorLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class IIteratorLayer or the Python class IIteratorLayer for further
details.

A.1.19. ILoopBoundaryLayer
Class ILoopBoundaryLayer, derived from class ILayer, is the base class for the loop-related
layers, specifically ITripLimitLayer, ILoopIteratorLayer, IRecurrenceLayer, and
ILoopOutputLayer. Class ILoopBoundaryLayer defines a virtual method getLoop() that
returns a pointer to the associated ILoop.

For more information about the ILoopBoundaryLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class ILoopBoundaryLayer or the Python class ILoopBoundaryLayer for
further details.

A.1.20. ILoopOutputLayer
The ILoopOutputLayer specifies an output from the loop. A loop is defined by loop boundary
layers.

For more information about the ILoopOutputLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class ILoopOutputLayer or the Python class ILoopOutputLayer for further
details.

A.1.21. ILRNLayer
The ILRNLayer implements cross-channel Local Response Normalization (LRN).

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_iterator_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iiteratorlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#work-with-loops
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_boundary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iloopboundarylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_loop_output_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iloopoutputlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 135

Layer Description

Given an input A, the LRN layer performs a cross-channel LRN to produce output Bof
the same dimensions. The operation of this layer depends on four constant values: w is
the size of the cross-channel window over which the normalization will occur, α, β, and k
are normalization parameters. This formula shows the operation performed by the layer:

Where I represents the indexes of tensor elements, and the indices where the channel
dimension is replaced by j. For channel index c of C channels, index j ranges from

 and .

Conditions And Limitations

A must have three or more dimensions. The following list shows the possible values for the

parameters:

Refer to the C++ class ILRNLayer or the Python class ILRNLayer for further details.

A.1.22. IMatrixMultiplyLayer
The IMatrixMultiplyLayer implements matrix multiplication for a collection of matrices.

Layer Description

The IMatrixMultiplyLayer computes the matrix multiplication of input tensors A, of
dimensions a, and B, of dimensions b, and produces output tensor C, of dimensions c. A,
B, and C all have the same rank . If , then A, B, and C are treated as collections
of matrices; A and B may be optionally transposed (the transpose is applied to the last
two dimensions). Let and be the input tensors after the optional transpose, then

.

Given the corresponding dimensions and of and , then

; that is, the resulting collection has the
same number of matrices as the input collections, and the rows and columns correspond to
the rows in and the columns in . Notice also the use of max in lengths, for the case of
broadcast on a dimension.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_l_r_n_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ilrnlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 136

Conditions And Limitations

Tensors A and B must have at least two dimensions and agree on the number of dimensions.
The length of each dimension must be the same, assuming that dimensions of length one are
broadcast to match the corresponding length.

Refer to the C++ class IMatrixMultiplyLayer or the Python class IMatrixMultiplyLayer
for further details.

A.1.22.1. MatrixMultiply Layer Setup
The Matrix Multiplication layer is used to execute the first step of the functionality provided
by a FullyConnected layer. As shown in the code below, a Constant layer will need to be used
so that the FullyConnected weights can be stored in the engine. The output of the Constant
and RNN layers are then used as inputs to the Matrix Multiplication layer. The RNN output is
transposed so that the dimensions for the MatrixMultiply are valid.
weightMap["trt_fcw"] = transposeFCWeights(weightMap[FCW_NAME]);
auto fcwts = network->addConstant(Dims2(VOCAB_SIZE, HIDDEN_SIZE), weightMap["trt_fcw"]);
auto matrixMultLayer = network->addMatrixMultiply(
*fcwts->getOutput(0), false, *rnn->getOutput(0), true);
assert(matrixMultLayer != nullptr);
matrixMultLayer->getOutput(0)->setName("Matrix Multiplication output");

For more information, refer to the TensorRT API documentation.

Empty Tensors

Multiplying matrices with dimensions [m,0] and [0,n] results in a matrix of zeros with
dimensions [m,n]. It’s zeros because each element of the result is the sum over an empty set
of products.

IFullyConnectedLayer is fundamentally a matrix multiplication, so similar rules apply.

A.1.23. IParametricReluLayer
The IParametricReluLayer represents a parametric ReLU operation, meaning a leaky ReLU
where the slopes for x < 0 can be different for each element.

Layer Description

Users provide a data tensor X and a slopes tensor S. At each element, the layer computes y =
x if x ≥ 0 and y = x∙s if x < 0. The slopes tensor may be broadcast to the size of the data
tensor and vice versa.

Conditions And Limitations

Parametric ReLU is not supported in many fusions; therefore, the performance may be worse
than with standard ReLU.

Refer to the C++ class IParametricReluLayer or the Python class IParametricReluLayer
for further details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_matrix_multiply_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#imatrixmultiplylayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_parametric_re_l_u_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iparametricrelulayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 137

A.1.24. IPaddingLayer
The IPaddingLayer implements spatial zero-padding of tensors along the two innermost
dimensions.

Note: IPaddingLayer is deprecated in TensorRT 8.2 and will be removed in TensorRT 10.0.
Use ISliceLayer to pad the tensor, which supports new non-constant, reflects padding mode
and clamp, and supports padding output with dynamic shape.

Layer Description

The IPaddingLayer pads zeros to (or trims edges from) an input tensor A along each of the
two innermost dimensions and gives the output tensor B. Padding can be different on each
dimension, asymmetric, and can be either positive (resulting in expansion of the tensor) or
negative (resulting in trimming). Padding at the beginning and end of the two dimensions is
specified by 2D vectors x and y for pre and post padding respectively.

For input tensor A of n dimensions a, the output B will have n dimensions b such that

. Accordingly, the values of

Bw are zeros if . Otherwise, where
 and for all other dimensions i.

Conditions And Limitations

‣ A must have three dimensions or more.

‣ The padding can only be applied along the two innermost dimensions.

‣ Only zero-padding is supported.

Refer to the C++ class IPaddingLayer or the Python class IPaddingLayer for further details.

A.1.25. IPluginV2Layer
The IPluginV2Layer provides the ability to extend the functionalities of TensorRT by using
custom implementations for unsupported layers.

Layer Description

The IPluginV2Layer is used to set up and configure the plugin. Refer to the IPluginV2 API
Description for more details on the API. TensorRT also has support for a Plugin Registry,
which is a single registration point for all plugins in the network. In order to register plugins
with the registry, implement the IPluginV2 class and the IPluginCreator class for your
plugin.

Conditions And Limitations

None

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_padding_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipaddinglayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 138

Empty Tensors

Plugins that need to handle empty tensors must be written with IPluginV2Ext,
IPluginV2IOExt, or IPluginV2DynamicExt.

WARNING: Empty tensors can have properties not seen for non-empty tensors:

‣ a volume of zero

‣ one or more strides equal to zero

The volume of zero can break kernel launching logic since a common approach is to set the
number of CUDA blocks proportional to the volume being processed. CUDA reports an error
for launching a kernel with zero blocks. Hence plugins should be careful about avoiding such
launches.

Strides should be calculated the same as for non-empty tensors. For example, given a tensor
with dimensions [N,C,H,W], the stride of the memory representation corresponding to
an increment along the C axis is H*W. It doesn’t matter if H or W is zero. Though make sure
that your code does not divide by a stride or dimension that could be zero. For example, the
assertion in the following fragment risks dividing by zero in both divisions:
int volume = N*C*H*W;
int cStride = H*W;
...
assert(C == volume/N/cStride);

For some plugins, an effective strategy is to make the plugin’s method enqueue return early
if all outputs are empty, and thereby not complicate the rest of the logic with consideration of
zero-length dimensions.

Refer to the C++ class IPluginV2Layer or the Python class IPluginV2Layer for further
details.

A.1.26. IPoolingLayer
The IPoolingLayer implements pooling within a channel. Supported pooling types are
maximum, average, and maximum-average blend.

Layer Description: 2D pooling

Compute a pooling with 2D filters on a tensor A, of dimensions a, to produce a tensor B, of
dimensions b. The dimensions of B depend on the dimensions of A, window size r, symmetric
padding p and stride s such that:

‣
‣

‣

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_plugin_v2_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipluginv2layer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 139

Let tensor C be the zero-padded copy of A with dimensions

 where and .

Where func is defined by one of the pooling types t:
PoolingType::kMAX

Maximum over elements in window.
PoolingType::kAVERAGE

Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND

Hybrid of maximum and average pooling. The results of the maximum
pooling and the average pooling are combined with the blending factor as (1-
blendFactor)*maximumPoolingResult + blendFactor*averagePoolingResult to
yield the result. The blendFactor can be set to a value between 0 and 1.

By default, average pooling is performed on the overlap between the pooling window and the
padded input. If the exclusive parameter is set to true, the average pooling is performed on
the overlap area between the pooling window and unpadded input.

Layer Description: 3D pooling

Compute a pooling with 3D filters on a tensor A, of dimensions a, to produce a tensor B, of
dimensions b. The dimensions of B depend on the dimensions of A, window size r, symmetric
padding p and stride s such that:

‣
‣

‣

‣

Let tensor C be the zero-padded copy of A with dimensions

 where ,

, and .

Where func is defined by one of the pooling types t:
PoolingType::kMAX

Maximum over elements in window.
PoolingType::kAVERAGE

Average over elements in the window.
PoolingType::kMAX_AVERAGE_BLEND

Hybrid of maximum and average pooling. The results of the maximum
pooling and the average pooling are combined with the blending factor as (1-
blendFactor)*maximumPoolingResult + blendFactor*averagePoolingResult to
yield the result. The blendFactor can be set to a value between 0 and 1.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 140

By default, average pooling is performed on the overlap between the pooling window and the
padded input. If the exclusive parameter is set to true, the average pooling is performed on
the overlap area between the pooling window and unpadded input.

Conditions And Limitations

The number of input kernel dimensions determine 2D or 3D. For 2D pooling, input and output
tensors should have three or more dimensions. For 3D pooling, input and output tensors
should have four or more dimensions.

If PoolingType::kMAX is used and the padding size is equal to or greater than the window
size on any dimension, the boundaries of the output tensor (corresponding to the input
windows that lie completely outside of the input tensor) will be filled with negative infinity (-
inf) for FP32/FP16 or -128 for INT8. This may lead to NaNs in the subsequent layers.

Refer to the C++ class IPoolingLayer or the Python class IPoolingLayer for further details.

A.1.27. IQuantizeLayer
This IQuantizeLayer layer implements quantization operators.

Layer Description

The IQuantizeLayer layer accepts a floating-point data input tensor and uses the scale and
zero-point inputs to quantize the data to an 8-bit signed integer according to:
output = clamp(round(input / scale) + zeroPt)

Rounding type is rounding-to-nearest ties-to-even. Clamping is in the range [-128, 127].
The first input (index 0) is the tensor to be quantized. The second (index 1) and third (index
2) are the scale and zero-point respectively.

Refer to the C++ class IQuantizeLayer or the Python class IQuantizeLayer for further
details.

A.1.28. IRaggedSoftMaxLayer
The IRaggedSoftMaxLayer applies the SoftMax function on an input tensor of sequences
across the sequence lengths specified by the user.

Layer Description

This layer has two inputs: a 2D input tensor A of shape zs containing z sequences of data and
a 1D bounds tensor B of shape z containing the lengths of each of the z sequences in A. The
resulting output tensor C has the same dimensions as the input tensor A.

The SoftMax function S is defined on every i of the z sequences of data values like in the
SoftMax layer.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_pooling_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ipoolinglayer
https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_quantize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iquantizelayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 141

Conditions And Limitations

None

Refer to the C++ class IRaggedSoftMaxLayer or the Python class IRaggedSoftMaxLayer for
further details.

A.1.29. IRecurrenceLayer
The IRecurrenceLayer specifies a recurrent definition. A loop is defined by loop boundary
layers.

For more information about the IRecurrenceLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class IRecurrenceLayer or the Python class IRecurrenceLayer for further
details.

A.1.30. IReduceLayer
The IReduceLayer implements dimension reduction of tensors using reduce operators.

Layer Description

The IReduceLayer computes a reduction of input tensor A, of dimensions a, to produce
an output tensor B, of dimensions b, over the set of reduction dimensions r. The
reduction operator op is one of max, min, product, sum, and average. The reduction
can preserve the number of dimensions of A or not. If the dimensions are kept, then

; if the dimensions are not kept, then where and

 is the number of reduction indexes in r less than or equal to j.

With the sequence of indexes i, , where the sequence of indexes j is such that

.

Conditions And Limitations

The input must have at least one non-batch dimension. The batch size dimension cannot be
reduced.

Empty Tensors

If all inputs to a layer are empty, the output is usually empty, but there are exceptions. The
exceptions arise from how reduction over an empty set is defined in mathematics: Reduction
over an empty set yields the identity element for the operation.

The following table shows cases relevant to TensorRT:

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_ragged_soft_max_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iraggedsoftmaxlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_recurrence_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#irecurrencelayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 142

Table 5. Empty tensor exceptions

Reduction Operation kFLOAT and kHALF kINT32 kINT8

kSUM 0 0 0

kPROD 1 1 1

kMAX ∞ INT_MAX -128

kMIN -∞ INT_MIN 127

kAVG NaN 0 -128

The average empty set is mathematically ill-defined. The obvious definition (sum of elements)/
(number of elements) yields 0/0. It’s represented by Not a Number (NaN) for floating-point.
The 0 for kAVG over an empty set of kINT32 has no mathematical justification and was
chosen for compatibility with TensorFlow.

TensorRT usually performs reduction for kINT8 via kFLOAT or kHALF. The kINT8 values
show the quantized representations of the floating-point values, not their dequantized values.

Refer to the C++ class IReduceLayer or the Python class IReduceLayer for further details.

A.1.31. IResizeLayer
The IResizeLayer implements the resize operation on an input tensor.

Layer Description

The IResizeLayer resizes input tensor A, of dimension a, to produce an output tensor B, of
dimension b, using a given resize mode m. Output dimension b can either be provided directly

or can be computed using resize scales s. If resize scales s are provided, .

Interpolation modes such as Nearest and Linear are supported for the resize operation. The

nearest mode resizes innermost d dimensions of N-D tensors, where and N

> 0. The linear mode resizes innermost d dimensions of N-D tensors, where
and N > 0.

The coordinate transformation mapping function, while interpolating, can be configured to
align corners, asymmetric and half pixel. When resized to a single pixel, we support using
either the coordinate transformation or using the upper left pixel. When resize mode is
Nearest, we support different rounding modes like half down, half up, round to floor, and
round to ceiling.

Conditions And Limitations

Either output dimension b or resize scales s must be known and valid. Number of scales must
be equal to the number of input dimensions. Number of output dimensions must be equal to
the number of input dimensions.

Refer to the C++ class IResizeLayer or the Python class IResizeLayer for further details.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_reduce_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ireducelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_resize_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IResizeLayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 143

A.1.32. IRNNv2Layer
The IRNNv2Layer implements recurrent layers such as Recurrent Neural Network (RNN),
Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM). Supported types are
RNN, GRU, and LSTM. It performs a recurrent operation, where the operation is defined by
one of several well-known recurrent neural network (RNN) "cells."

Note: The IRNNv2Layer is deprecated in favor of the loop API; however, it is still available for
backward compatibility. For more information about the loop API, refer to sampleCharRNN
with the --Iloop option.

Layer Description

This layer accepts an input sequence X, initial hidden state H0, and if the cell is a long short-
term memory (LSTM) cell, initial cell state C0, and produces an output Y which represents the
output of the final RNN "sub-layer" computed across T timesteps (refer below). Optionally, the
layer can also produce an output hT representing the final hidden state, and, if the cell is an
LSTM cell, an output cT representing the final cell state.

Let the operation of the cell be defined as the function . This function takes vector
inputs x, h, and c, and produces up to two vector outputs h' and c', representing the hidden and
cell state after the cell operation has been performed.

In the default (unidirectional) configuration, the RNNv2 layer applies Gas shown in the
following diagram:

G' is a variant of G,.

https://github.com/NVIDIA/TensorRT/tree/main/samples/opensource/sampleCharRNN

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 144

Arrows leading into boxes are function inputs, and arrows leading away from boxes are
function outputs.

‣
‣

‣
‣

The gray c edges are only present if the RNN is using LSTM cells for G and G'.

Note: The above construction has L "sub-layers" (horizontal rows of G), and the matrices Hi and

Ci have dimensionality L.

Optionally, the sequence length Tmay be specified as an input to the RNNv2 layer, allowing the
client to specify a batch of input sequences with different lengths.

Bidirectional RNNs (BiRNNs): The RNN can be configured to be bidirectional. In that case,
each sub-layer consists of a "forward" layer and a "backward" layer. The forward layer
iteratively applies G using xi from 0 to T, and the backward layer iteratively applies G using xi
from T to 0, as shown in the diagram below:

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 145

G'

x
0

h
0f,0 h

1f,0c
0f,0 c

1f,0

G'G'G'

G'
h

Tb,0 h
(T-1)b,0c

Tb,0 c
(T-1)b,0

G' G'G'

G'

x
1

h
2f,0

c
2f,0

G'G'G'

G' h
(T-2)b,0

c
(T-2)b,0

G' G'G'

h
0f,0

h
0,0

h
1f,0

h
1,0

G'

x
T-1

h
(T-1)f,0

c
(T-1)f,0

G'G'G'

G' G' G'G'

h
(T-1)f,0

h
(T-1),0

h
Tb,0

h
Tf,0

c
Tf,0

h
0b,0

c
0b,0

...

...

h
1b,0

c
1b,0

h
T,0

G
h

0f,1 h
1f,1c

0f,1 c
1f,1

GGG

G
h

Tb,1 h
(T-1)b,1c

Tb,1 c
(T-1)b,1

GGG

G h
2f,1

c
2f,1

GGG

G h
(T-2)b,1

c
(T-2)b,1

GGG

h
0f,1

h
0,1

h
1f,1

h
1,1

Gh
(T-1)f,1

c
(T-1)f,1

GGG

GGGG

h
(T-1)f,1

h
(T-1),1

h
Tb,1

h
Tf,1

c
Tf,1

h
0b,1

c
0b,1

...

...

h
1b,1

c
1b,1

h
T,1

h
0,L-1

h
1,L-1 h

(T-1),L-1

G
h

0f,L h
1f,Lc

0f,L c
1f,L

GGG

G
h

Tb,L h
(T-1)b,Lc

Tb,L c
(T-1)b,L

GGG

G h
2f,L

c
2f,L

GGG

G h
(T-2)b,L

c
(T-2)b,L

GGG

h
0f,L

h
0,L

h
1f,L

h
1,L

Gh
(T-1)f,L

c
(T-1)f,L

GGG

GGGG

h
(T-1)f,L

h
(T-1),L

h
Tb,L

h
Tf,L

c
Tf,L

h
0b,L

c
0b,L

...

...

h
1b,L

c
1b,L

h
T,L

...

...

h
(T-1)b,0

h
(T-2)b,0

h
0b,0

h
(T-1)b,1

h
(T-2)b,1

h
0b,1

h
(T-1)b,L

h
(T-2)b,L

h
0b,L

Black bars in the diagram above represent concatenation. The full hidden state ht is defined by
the concatenation of the forward hidden state htf and the backward hidden state htb:

‣
‣

Similarly, for the cell state (not shown), each ht,i is used as input to the next sub-layer, as
shown above.

RNN operations: The RNNv2 layer supports the following cell operations:

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 146

‣ (c not used)

‣ (c not used)

‣
‣
‣ (c not used)

‣
‣
‣
‣
‣
‣
‣
For GRU and LSTM, we refer to the intermediate computations for Z, M, I, F, for example, as
“gates.”

In the unidirectional case, the dimensionality of the W matrices is HxE for the first layer and
HxH for subsequent layers (unless skip mode is set, refer below). In the bidirectional case,
the dimensionality of the W matrices is HxE for the first forward/backward layer and Hx2H for
subsequent layers.

The dimensionality of the R matrices is always HxH. The biases and have
dimensionality H.

Skip mode: The default mode used by RNNv2 is "linear mode." In this mode, the first sub-

layer of the RNNv2 layer uses the cell , which accepts a vector x of size E (embedding
size), and vectors h and c of size H (hidden state size), and is defined by the cell operation

formula. Subsequent layers use the cell , where x, h, and c are all vectors of size H,
and are also defined by the cell operation formula.

Optionally, the RNN can be configured to run in “skip mode,” which means the input weight
matrices for the first layer are implicitly identity matrices, and x Is expected to be size H.

Conditions And Limitations

The data (X) input and initial hidden/cell state (H0 and C0) tensors have at least two non-batch
dimensions. Additional dimensions are considered batch dimensions.

The optional sequence length input T is 0-dimensional (scalar) when excluding batch
dimensions.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 147

The data (Y) output and final hidden/cell state (HT and CT) tensors have at least two non-batch
dimensions. Additional dimensions are considered batch dimensions. If the sequence length
input is provided, each output in the batch is padded to the maximum sequence length .

The IRNNv2Layer supports:

‣ FP32 and FP16 data type for input and output, hidden, and cell tensors.

‣ INT32 data type only for the sequence length tensor.

After the network is defined, you can mark the required outputs. RNNv2 output tensors that
are not marked as network outputs or used as inputs to another layer are dropped.
network->markOutput(*pred->getOutput(1));
pred->getOutput(1)->setType(DataType::kINT32);
rnn->getOutput(1)->setName(HIDDEN_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(1));
if (rnn->getOperation() == RNNOperation::kLSTM)
{
rnn->getOutput(2)->setName(CELL_OUT_BLOB_NAME);
network->markOutput(*rnn->getOutput(2));
};

Refer to the C++ class IRNNv2Layer or the Python class IRNNv2Layer for further details.

A.1.32.1. RNNv2 Layer Setup
The first layer in the network is an RNN layer. This is added and configured in the
addRNNv2Layer() function. This layer consists of the following configuration parameters.

Operation
This defines the operation of the RNN cell. Supported operations are currently relu,
LSTM, GRU, and tanh.

Direction
This defines whether the RNN is unidirectional or bidirectional (BiRNN).

Input mode
This defines whether the first layer of the RNN carries out a matrix multiply (linear mode),
or the matrix multiply is skipped (skip mode).

For example, in the network used in sampleCharRNN, we used a linear, unidirectional LSTM
cell containing LAYER_COUNT number of stacked layers. The code below shows how to create
this RNNv2 layer.
auto rnn = network->addRNNv2(*data, LAYER_COUNT, HIDDEN_SIZE, SEQ_SIZE, RNNOperation::kLSTM);

Note: For the RNNv2 layer, weights and bias need to be set separately. For more information,
refer to RNNv2 Layer - Optional Inputs.

For more information, refer to the TensorRT API documentation.

A.1.32.2. RNNv2 Layer - Optional Inputs
If there are cases where the hidden and cell states need to be pre-initialized to a non-zero
value, then you can pre-initialize them via the setHiddenState and setCellState calls.
These are optional inputs to the RNN.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_r_n_nv2_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#irnnv2layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 148

C++ code snippet
rnn->setHiddenState(*hiddenIn);
if (rnn->getOperation() == RNNOperation::kLSTM)
 rnn->setCellState(*cellIn);

Python code snippet
rnn.hidden_state = hidden_in
if rnn.op == trt.RNNOperation.LSTM:
rnn.cell_state = cell_in

Empty Tensors

IRNNv2Layer works for empty tensors but was deprecated in TensorRT 7.2.1 and removed in
TensorRT 9.0. Use a loop to synthesize a recurrent sub-network as discussed in the Working
With Loops section.

A.1.33. IScaleLayer
The IScaleLayer implements a per-tensor, per-channel, or per-element affine
transformation and/or exponentiation by constant values.

Layer Description

Given an input tensor A, the IScaleLayer performs a per-tensor, per-channel, or per-
element transformation to produce an output tensor B of the same dimensions. The
transformations corresponding to each mode are:
ScaleMode::kUNIFORM tensor-wise transformation

ScaleMode::kCHANNEL channel-wise transformation

ScaleMode::kELEMENTWISE element-wise transformation

Where I represents the indexes of tensor elements and c(I) is the channel dimension in I.

Conditions And Limitations

A must have at least three dimensions in implicit batch mode and at least four dimensions in
explicit batch mode.

If an empty weight object is provided for scale, shift, or power, then a default value is used.
By default, scale has a value of 1.0, shift has a value of 0.0, and power has a value of 1.0.

Refer to the C++ class IScaleLayer or the Python class IScaleLayer for further details.

A.1.34. IScatterLayer
The IScatterLayer has three input tensors: Data , Indices , and Updates , one output
tensor , and a scatter mode. An optional axis parameter is available when kELEMENT mode is
used.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#rnnv2-layer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_scale_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iscalelayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 149

Layer Description

Data tensor is of rank and has the same shape as the output tensor. Generally, the
layer writes to the output tensor either the Data tensor or the Updates tensor depending on
the Indices tensor. The interpretation of the indices tensor and mode of operation depends on
the scatter mode.

If mode == kELEMENT, for each value in updates, its output index is specified by its index in
updates for dimension != axis and by the corresponding value in indices for dimension = axis.
Pseudocode:
output = data;
for (auto read_idx : Grid(data.extent))
{
 auto write_idx = read_idx[axis];
 write_idx[axis] = indices[read_idx];
 output[write_idx] = updates[read_idx];
}
return output;

If mode == kND, assume:

‣ tensor of and ,

‣ indices tensor of and , and

‣ updates tensor of

The output of the operation is a tensor with rank and .

Mode of operation is defined by the following equations:

 1. If , then

 2. If , then

Conditions And Limitations

For both modes:

‣ repeated indices in I leads to undefined behavior,

‣ if dynamic shapes are used, using negative indices has undefined behavior,

‣ only data tensors can have dynamic shapes.

Refer to the C++ class IScatterLayer or the Python class IScatterLayer for further details.

A.1.35. ISelectLayer
The ISelectLayer returns either of the two inputs depending on the condition.

Layer Description

This layer returns the elements chosen from input tensor B(thenInput) or C(elseInput)
depending on the condition tensor A.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_scatter_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iscatterlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 150

Conditions And Limitations

All three input tensors must have the same number of dimensions; along each axis, each must
have the same length or a length of one. If the length is one, the tensor is broadcast along that
axis. The output tensor has the dimensions of the inputs after the broadcast rule is applied.
The condition tensor is required to be of boolean type. The other two inputs may be FP32,
FP16, or INT32.

Refer to the C++ class ISelectLayer or the Python class ISelectLayer for further details.

A.1.36. IShapeLayer
The IShapeLayer gets the shape of a tensor.

Layer Description

The IShapeLayer outputs the dimensions of its input tensor. The output is a 1D tensor of type
INT32.

Conditions And Limitations

The input tensor must have at least one dimension. The output tensor is a “shape tensor,”
which can be used as an input only for layers that handle shape tensors. Refer to Execution
Tensors vs. Shape Tensors for more information.

Refer to the C++ class IShapeLayer or the Python class IShapeLayer for further details.

A.1.37. IShuffleLayer
The IShuffleLayer implements a reshape and transpose operator for tensors.

Layer Description

The IShuffleLayer implements reshuffling of tensors to permute the tensor and/or reshape
it. An input tensor A of dimensions a is transformed by applying a transpose, followed by
a reshape operation with reshape dimensions r, and then followed by another transpose
operation to produce an output data tensor B of dimensions b.

To apply the transpose operation to A, the permutation order must be specified. The specified
permutation p1 is used to permute the elements of A in the following manner to produce
output C of dimensions and for a sequence of indexes I. By default, the

permutation is assumed to be an identity (no change to the input tensor).

The reshape operation does not alter the order of the elements and reshapes tensor C into

tensor R of shape rI, such that . Only one dimension
can be inferred, such that .

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_select_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iselectlayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shape_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#tensorrt.IShapeLayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 151

The special interpretation of as a placeholder, and not the actual dimensions, can be
turned off by calling the method setZeroIsPlaceholder(false) on the layer. If using
dynamic shapes, it is strongly recommended to turn off the placeholder interpretation of
0 because it can interfere with the correct handling of empty tensors and can decrease
optimization by TensorRT. For example, consider a tensor C with dimensions [2,x] that needs
to be reshaped to a tensor R with dimensions [x,2]. With the placeholder interpretation, when
x=0, the reshape dimensions expand to [2,2], not [0,2] as intended.

The reshape dimensions can be specified as build-time constants in the layer or as runtime
values by supplying a second input to the layer, which must be a 1D tensor of type INT32.
A placeholder 0 or wildcard -1 occurring in the second input at runtime are interpreted
identically to how they are interpreted if they are build-time constants.

The second transpose operation is applied after the reshape operation. It follows the same
rules as the first transpose operation and requires a permutation (say p2) to be specified. This
permutation produces an output tensor B of dimensions b, such that and for

a sequence of indexes I.

Conditions And Limitations

Product of dimensions rI must be equal to the product of input dimensions a.

Empty Tensors

By default, IShuffleLayer treats a 0 in the reshape dimensions as a special placeholder,
and not meaning zero. The placeholder means “copy the corresponding input dimension”.
This default behavior has been kept for compatibility with earlier versions of TensorRT, but is
hazardous when working with empty tensors.

If you are reshaping to dimensions that might include a zero-length dimension, disable the
placeholder treatment of zero with the IShuffleLayer::setZeroIsPlaceholder method.
IShuffleLayer* s = ...;
s->setZeroIsPlaceholder(false);

For example, consider the following code that intends to reshape a tensor input to dimensions
specified by shape tensor reshapeDims.
IShuffleLayer* s = network.addShuffle(input);
s->setInput(1, reshapeDims);
#if CORRECT
s->setZeroIsPlaceholder(false);
#endif
output = *s->getOutput(0);

Suppose at runtime, the input has dimensions [3,0], and the second input reshapeDims
contains [0,0]. If the engine was built with CORRECT==0, the zeros in reshapeDims are
interpreted as placeholders for input dimensions, and the output has dimensions [3,0], not
[0,0] as intended. Building the fragment with CORRECT==1 ensures that the IShuffleLayer
treats zero as zero. Unless you know that you need the placeholder feature, it is recommended
that it be turned off with setZeroIsPlaceholder(false).

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 152

Empty tensors also introduce the possibility of a new kind of error when using the -1 wildcard
in reshape dimensions. The wildcard denotes an unknown dimension xthat TensorRT solves

using the equation:

If the volume of the other reshape dimensions is zero, one of two errors occur:

‣ The volume of the input tensor is zero. Then x is indeterminate.

‣ The volume of the input tensor is nonzero. Then x has no solution.

TensorRT reports an error in either case, possibly at build time or run time.

Refer to the C++ class IShuffleLayer or the Python class IShuffleLayer for further details.

A.1.38. ISliceLayer
The ISliceLayer implements five variants of the slice operations.

Layer Description

Given an input n-dimension tensor A, the Slice layer generates an output tensor B with
elements extracted from A. Let us denote a, b, s, o, d, f as element coordinates in A, element
coordinates in B, stride, starting offset, the extent of each dimension in A and constant value
to fill, respectively. The stride can be positive, negative, or zero. The correspondence mapping
between A and B are:

where .

Conditions And Limitations

The corresponding A coordinates for every element in B must not be out of bounds.

Empty Tensors

The behavior of ISliceLayer for empty tensors follows a strict interpretation of its semantics.
Specifically, consider slicing a dimension of length L with parameters start, size, and stride.

Constructing the output tensor requires subscripting the half-open interval [0,L) with
generated indices of the form start+i*stride for all i, such that 0 ≤ i < size. All the
generated indices must be in bounds. However, with size=0, no indices are generated, and

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_shuffle_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#ishufflelayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 153

thus no bounds checking applies. So for size=0, the start and stride parameters do not matter
and can be any values.

Conversely, if L=0 and size≠0, then TensorRT reports an error since the half-open interval
[0,L) becomes empty, and the generated indices are inherently out of bounds.

Refer to the C++ class ISliceLayer or the Python class ISliceLayer for further details.

A.1.39. ISoftMaxLayer
The ISoftMaxLayer applies the SoftMax function on the input tensor along an input
dimension specified by the user.

Layer Description

Given an input tensor A of shape a and an input dimension i, this layer applies the SoftMax
function on every slice along dimension i of A. The resulting output tensor C
has the same dimensions as the input tensor A.

The SoftMax function S for a slice x is defined as

The SoftMax function rescales the input such that every value in the output lies in the range
[0, 1] and the values of every slice along dimension i of C sum up to 1.

Conditions And Limitations

For n being the length of a, the input dimension i should be . If the user does not

provide an input dimension, then .

Refer to the C++ class ISoftMaxLayer or the Python class ISoftMaxLayer for further details.

A.1.40. ITopKLayer
The ITopKLayer finds the top K maximum (or minimum) elements along a dimension,
returning a reduced tensor and a tensor of index positions.

Layer Description

For an input tensor A of dimensions a, given an axis i, an operator that is either max or min,
and a value for k, produces a tensor of values V and a tensor of indices I of dimensions v such

that .

The output values are:

‣
‣

where sort is in descending order for operator max and ascending order for operator min.

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_slice_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#islicelayer
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_soft_max_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#isoftmaxlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 154

Ties are broken during sorting with lower index considered to be larger for operator max, and
lower index considered to be smaller for operator min.

Conditions And Limitations

The K value must be 3840 or less. Only one axis can be searched to find the top K minimum or
maximum values; this axis cannot be the batch dimension.

Refer to the C++ class ITopKLayer or the Python class ITopKLayer for further details.

A.1.40.1. TopK Layer Setup
The TopK layer is used to identify the character that has the maximum probability of appearing
next.

Note: The layer has two outputs. The first output is an array of the top K values. The second,
which is of more interest to us, is the index at which these maximum values appear.

The code below sets up the TopK layer and assigns the OUTPUT_BLOB_NAME to the second
output of the layer.
auto pred = network->addTopK(*addBiasLayer->getOutput(0),
 nvinfer1::TopKOperation::kMAX, 1, reduceAxis);
assert(pred != nullptr);
pred->getOutput(1)->setName(OUTPUT_BLOB_NAME);

For more information, refer to the NVIDIA TensorRT API Reference.

A.1.41. ITripLimitLayer
The ITripLimitLayer specifies how many times the loop iterates. A loop is defined by loop
boundary layers.

For more information about the ITripLimitLayer, including how loops work and their
limitations, refer to Working With Loops.

Refer to the C++ class ITripLayer or the Python class ITripLayer for further details.

A.1.42. IUnaryLayer
The IUnaryLayer supports PointWise unary operations.

Layer Description

The IUnaryLayer performs PointWise operations on input tensor A resulting in output tensor
B of the same dimensions. The following functions are supported:

‣
‣
‣
‣

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_top_k_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#itopklayer
http://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_trip_limit_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#itriplimitlayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 155

‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣
‣

Conditions And Limitations

Input and output can be zero to 7-dimensional tensors.

Refer to the C++ class IUnaryLayer or the Python class IUnaryLayer for further details.

A.2. Data Format Descriptions
TensorRT supports different data formats. There are two aspects to consider: data type and
layout.

Data type format

The data type is the representation of each individual value. Its size determines the range of
values and the precision of the representation, which are FP32 (32-bit floating point, or single
precision), FP16 (16-bit floating point or half precision), INT32 (32-bit integer representation),
and INT8 (8-bit representation).

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/c_api/classnvinfer1_1_1_i_unary_layer.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Graph/Layers.html#iunarylayer

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 156

Layout format

The layout format determines the ordering in which values are stored. Typically, batch
dimensions are the leftmost dimensions, and the other dimensions refer to aspects of each
data item, such as C is channel, H is height, and W is width, in images. Ignoring batch sizes,
which are always preceding these, C, H, and W are typically sorted as CHW (see Figure 17) or HWC
(see Figure 18).

Figure 17. Layout format for CHW: The image is divided into HxW matrices,
one per channel, and the matrices are stored in sequence; all
the values of a channel are stored contiguously.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 157

Figure 18. Layout format for HWC: The image is stored as a single HxW
matrix, whose value is actually C-tuple, with a value per
channel; all the values of a point (pixel) are stored contiguously.

To enable faster computations, more formats are defined to pack together channel values
and use reduced precision. For this reason, TensorRT also supports formats like NC/2HW2 and
NHWC8.

In NC/2HW2 (TensorFormat::kCHW2), pairs of channel values are packed together in each HxW
matrix (with an empty value in the case of an odd number of channels). The result is a format
in which the values of ⟨C/2⟨HxW matrices are pairs of values of two consecutive channels (see
Figure 19); notice that this ordering interleaves dimensions as values of channels that have
stride 1 if they are in the same pair and stride 2xHxW otherwise.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 158

Figure 19. A pair of channel values are packed together in each HxW
matrix. The result is a format in which the values of [C/2] HxW
matrices are pairs of values of two consecutive channels.

In NHWC8 (TensorFormat::kHWC8), the entries of an HxW matrix include the values of all the
channels (see Figure 20). In addition, these values are packed together in ⟨C/8⟨ 8-tuples, and
C is rounded up to the nearest multiple of 8.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 159

Figure 20. In this NHWC8 format, the entries of an HxW matrix include the
vlaues of all the channels.

Other TensorFormat follow similar rules to TensorFormat::kCHW2 and
TensorFormat::kHWC8 mentioned previously.

A.3. Command-Line Programs

A.3.1. trtexec
Included in the samples directory is a command-line wrapper tool called trtexec. trtexec is
a tool to quickly utilize TensorRT without having to develop your own application.

The trtexec tool has three main purposes:

‣ It’s useful for benchmarking networks on random or user-provided input data.

‣ It’s useful for generating serialized engines from models.

‣ It’s useful for generating serialized timing cache from the builder.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 160

A.3.1.1. Benchmarking Network
If you have a model saved as an ONNX file, UFF file, or if you have a network description in
a Caffe prototxt format, you can use the trtexec tool to test the performance of running
inference on your network using TensorRT. The trtexec tool has many options for specifying
inputs and outputs, iterations for performance timing, precision allowed, and other options.

To maximize GPU utilization, trtexec enqueues the queries one batch ahead of time. In other
words, it does the following:
enqueue batch 0 -> enqueue batch 1 -> wait until batch 0 is done -> enqueue batch 2 -> wait
 until batch 1 is done -> enqueue batch 3 -> wait until batch 2 is done -> enqueue batch 4 -
> ...

If multi-stream (--streams=N flag) is used, then trtexec follows this pattern on each stream
separately.

The trtexec tool prints the following performance metrics. The following figure shows
an example Nsight System profile of a trtexec run with markers showing what each
performance metric means.
Throughput

The observed throughput is computed by dividing the number of queries by the Total Host
Walltime. If this is significantly lower than the reciprocal of GPU Compute Time, the GPU
may be underutilized because of host-side overheads or data transfers. Using CUDA graphs
(with --useCudaGraph) or disabling H2D/D2H transfers (with --noDataTransfer) may
improve GPU utilization. The output log provides guidance on which flag to use when
trtexec detects that the GPU is underutilized.

Host Latency
The summation of H2D Latency, GPU Compute Time, and D2H Latency. This is the latency
to infer a single query.

End-to-End Host Latency
The duration from when the H2D of a query is called to when the D2H of the same query
is completed, which includes the latency to wait for the completion of the previous query.
This is the latency of a query if multiple queries are enqueued consecutively and is usually
twice as long as the GPU Compute Time or Host Latency because the query needs to wait in
queue for one inference (see Figure 21).

Enqueue Time
The host latency to enqueue a query, including calling H2D/D2H CUDA APIs, running host-
side heuristics, and launching CUDA kernels. If this is longer than GPU Compute Time, the
GPU may be underutilized and the throughput may be dominated by host-side overhead.
Using CUDA graphs (with --useCudaGraph) may reduce Enqueue Time.

H2D Latency
The latency for host-to-device data transfers for input tensors of a single query. Add --
noDataTransfer to disable H2D/D2H data transfers.

D2H Latency
The latency for device-to-host data transfers for output tensors of a single query. Add --
noDataTransfer to disable H2D/D2H data transfers.

GPU Compute Time
The GPU latency to execute the CUDA kernels for a query.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 161

Total Host Walltime
The host walltime from when the first query (after warm-ups) is enqueued to when the last
query was completed.

Total GPU Compute Time
The summation of the GPU Compute Time of all the queries. If this is significantly shorter
than Total Host Walltime, the GPU may be under-utilized because of host-side overheads or
data transfers.

Figure 21. Performance metrics in a normal trtexec run under Nsight
Systems (ShuffleNet, BS=16, best, TitanRTX@1200MHz)

Add the --dumpProfile flag to trtexec to show per-layer performance profiles, which
allows users to understand which layers in the network take the most time in GPU
execution. The per-layer performance profiling works with launching inference as a CUDA
graph as well (requires CUDA 11.1 onwards). In addition, build the engine with the --
profilingVerbosity=detailed flag and add the --dumpLayerInfo flag to show detailed
engine information, including per-layer detail and binding information. This allows you to
understand which operation each layer in the engine corresponds to and their parameters.

A.3.1.2. Serialized Engine Generation
If you generate a saved serialized engine file, you can pull it into another application that runs
inference. For example, you can use the TensorRT Laboratory to run the engine with multiple
execution contexts from multiple threads in a fully pipelined asynchronous way to test parallel

https://github.com/NVIDIA/tensorrt-laboratory

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 162

inference performance. There are some caveats; for example, if you used a Caffe prototxt
file and a model is not supplied, random weights are generated. Also, in INT8 mode, random
weights are used, meaning trtexec does not provide calibration capability.

A.3.1.3. trtexec
If you provide a timing cache file to the --timingCacheFile option, the builder can load
existing profiling data from it and add new profiling data entries during layer profiling. The
timing cache file can be reused in other builder instances to improve the builder execution
time. It is suggested to reuse this cache only in the same hardware/software configurations
(for example, CUDA/cuDNN/TensorRT versions, device model, and clock frequency);
otherwise, functional or performance issues may occur.

A.3.1.4. Commonly used command-line flags
The section lists the commonly used trtexec command-line flags.

Flags for the build phase

‣ --onnx=<model>: Specify the input ONNX model.

‣ --deploy=<caffe_prototxt>: Specify the input Caffe prototxt model.

‣ --uff=<model>: Specify the input UFF model.

‣ --output=<tensor>: Specify output tensor names. Only required if the input models are
in UFF or Caffe formats.

‣ --maxBatch=<BS>: Specify the maximum batch size to build the engine with. Only needed
if the input models are in UFF or Caffe formats. If the input model is in ONNX format, use
the --minShapes, --optShapes, --maxShapes flags to control the range of input shapes
including batch size.

‣ --minShapes=<shapes>, --optShapes=<shapes>, --maxShapes=<shapes>: Specify the
range of the input shapes to build the engine with. Only required if the input model is in
ONNX format.

‣ --workspace=<size in MB>: Specify the maximum size of the workspace that
tactics are allowed to use. This flag has been deprecated. You can use the –-
memPoolSize=<pool_spec> flag instead.

‣ –-memPoolSize=<pool_spec>: Specify the maximum size of the workspace that tactics
are allowed to use, as well as the sizes of the memory pools that DLA will allocate per
loadable.

‣ : Specify the maximum size of workspace that tactics are allowed to use.

‣ --saveEngine=<file>: Specify the path to save the engine to.

‣ --fp16, --int8, --noTF32, --best: Specify network-level precision.

‣ --sparsity=[disable|enable|force]: Specify whether to use tactics which support
structured sparsity.

‣ disable: Disable all tactics using structured sparsity. This is the default.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 163

‣ enable: Enable tactics using structured sparsity. Tactics will only be used if the
weights in the ONNX file meet the requirements for structured sparsity.

‣ force: Enable tactics using structured sparsity and allow trtexec to overwrite the
weights in the ONNX file to enforce them to have structured sparsity patterns. Note
that the accuracy is not preserved, so this is to get inference performance only.

‣ --timingCacheFile=<file>: Specify the timing cache to load from and save to.

‣ --verbose: Turn on verbose logging.

‣ --buildOnly: Build and save the engine without running inference.

‣ --profilingVerbosity=[layer_names_only|detailed|none]: Specify the profiling
verbosity to build the engine with.

‣ --dumpLayerInfo, --exportLayerInfo=<file>: Print/Save the layer information of the
engine.

Flags for the inference phase

‣ --loadEngine=<file>: Load the engine from a serialized plan file instead of building it
from input ONNX, UFF, or Caffe model.

‣ --batch=<N>: Specify the batch size to run the inference with. Only needed if the input
models are in UFF or Caffe formats. If the input model is in ONNX format or if the engine is
built with explicit batch dimension, use --shapes instead.

‣ --shapes=<shapes>: Specify the input shapes to run the inference with.

‣ --warmUp=<duration in ms>, --duration=<duration in seconds>, --
iterations=<N>: Specify the minimum duration of the warm-up runs, the minimum
duration for the inference runs, and the minimum iterations of the inference runs. For
example, setting --warmUp=0 --duration=0 --iterations allows users to control
exactly how many iterations to run the inference for.

‣ --useCudaGraph: Capture the inference to a CUDA graph and run inference by launching
the graph. This argument may be ignored when the built TensorRT engine contains
operations that are not permitted under CUDA graph capture mode.

‣ --noDataTransfers: Turn off host-to-device and device-to-host data transfers.

‣ --streams=<N>: Run inference with multiple streams in parallel.

‣ --verbose: Turn on verbose logging.

‣ --dumpProfile, --exportProfile=<file>: Print/Save the per-layer performance
profile.

Refer to trtexec --help for all the supported flags and detailed explanations.

Refer to GitHub: trtexec/README.md file for detailed information about how to build this tool
and examples of its usage.

https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 164

A.4. Glossary
Device

A specific GPU. Two GPUs are considered identical devices if they have the same model
name and same configuration.

Platform
A combination of architecture and operating system. Example platforms are Linux on x86
and QNX Standard on Aarch64. Platforms with different architectures or different operating
systems are considered different platforms.

A.5. ACKNOWLEDGEMENTS
TensorRT uses elements from the following software, whose licenses are reproduced below.

Google Protobuf

This license applies to all parts of Protocol Buffers except the following:

‣ Atomicops support for generic gcc, located in src/google/protobuf/stubs/
atomicops_internals_generic_gcc.h. This file is copyrighted by Red Hat Inc.

‣ Atomicops support for AIX/POWER, located in src/google/protobuf/stubs/
atomicops_internals_power.h. This file is copyrighted by Bloomberg Finance LP.

Copyright 2014, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

‣ Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

‣ Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

‣ Neither the name of Google Inc. nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 165

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner of the input file used
when generating it. This code is not standalone and requires a support library to be linked with
it. This support library is itself covered by the above license.

Google Flatbuffers

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of
this definition, "control" means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted
by this License.

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of authorship.
For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

http://www.apache.org/licenses/

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 166

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of the copyright owner.
For the purposes of this definition, "submitted" means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not
limited to communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

 2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license
applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the
Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work
shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

 a). You must give any other recipients of the Work or Derivative Works a copy of this
License; and

 b). You must cause any modified files to carry prominent notices stating that You changed
the files; and

 c). You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

 d). If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 167

contained within such NOTICE file, excluding those notices that do not pertain to
any part of the Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within the Source form
or documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the Work,
provided that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding such
Contributions.

 6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work
and assume any risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 168

warranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright 2014 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at: http://
www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

BVLC caffe

COPYRIGHT

All contributions by the University of California:

Copyright (c) 2014, 2015, The Regents of the University of California (Regents)

All rights reserved.

All other contributions:

Copyright (c) 2014, 2015, the respective contributors

All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over their contributions
to Caffe. The project versioning records all such contribution and copyright details. If a
contributor wants to further mark their specific copyright on a particular contribution,
they should indicate their copyright solely in the commit message of the change when it is
committed.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 169

LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/caffe repository through pull-request, comment, or otherwise, the
contributor releases their content to the license and copyright terms herein.

half.h

Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 170

jQuery.js

jQuery.js is generated automatically under doxygen.

In all cases TensorRT uses the functions under the MIT license.

CRC

TensorRT includes CRC routines from FreeBSD.

� $FreeBSD: head/COPYRIGHT 260125 2013-12-31 12:18:10Z gjb $

� @(�)COPYRIGHT 8.2 (Berkeley) 3/21/94

The compilation of software known as FreeBSD is distributed under the following terms:

Copyright (c) 1992-2014 The FreeBSD Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The 4.4BSD and 4.4BSD-Lite software is distributed under the following terms:

All of the documentation and software included in the 4.4BSD and 4.4BSD-Lite Releases is
copyrighted by The Regents of the University of California.

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of the
University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 171

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

 3. All advertising materials mentioning features or use of this software must display the
following acknowledgement: This product includes software developed by the University of
California, Berkeley and its contributors.

 4. Neither the name of the University nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The Institute of Electrical and Electronics Engineers and the American National Standards
Committee X3, on Information Processing Systems have given us permission to reprint
portions of their documentation.

In the following statement, the phrase ``this text'' refers to portions of the system
documentation.

Portions of this text are reprinted and reproduced in electronic form in the second BSD
Networking Software Release, from IEEE Std 1003.1-1988, IEEE Standard Portable Operating
System Interface for Computer Environments (POSIX), copyright C 1988 by the Institute of
Electrical and Electronics Engineers, Inc. In the event of any discrepancy between these
versions and the original IEEE Standard, the original IEEE Standard is the referee document.

In the following statement, the phrase ``This material'' refers to portions of the system
documentation.

This material is reproduced with permission from American National Standards Committee
X3, on Information Processing Systems. Computer and Business Equipment Manufacturers
Association (CBEMA), 311 First St., NW, Suite 500, Washington, DC 20001-2178. The
developmental work of Programming Language C was completed by the X3J11 Technical
Committee.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 172

The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed or
implied, of the Regents of the University of California.

Note: The copyright of UC Berkeley's Berkeley Software Distribution ("BSD") source has
been updated. The copyright addendum may be found at ftp://ftp.cs.berkeley.edu/pub/4bsd/
README.Impt.License.Change and is included below.

July 22, 1999

To All Licensees, Distributors of Any Version of BSD:

As you know, certain of the Berkeley Software Distribution ("BSD") source code files require
that further distributions of products containing all or portions of the software, acknowledge
within their advertising materials that such products contain software developed by UC
Berkeley and its contributors.

Specifically, the provision reads:

" * 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors."

Effective immediately, licensees and distributors are no longer required to include the
acknowledgement within advertising materials. Accordingly, the foregoing paragraph of those
BSD Unix files containing it is hereby deleted in its entirety.

William Hoskins

Director, Office of Technology Licensing

University of California, Berkeley

getopt.c

$OpenBSD: getopt_long.c,v 1.23 2007/10/31 12:34:57 chl Exp $

$NetBSD: getopt_long.c,v 1.15 2002/01/31 22:43:40 tv Exp $

Copyright (c) 2002 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this software for any purpose with or without
fee is hereby granted, provided that the above copyright notice and this permission notice
appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 173

FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

Sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number
F39502-99-1-0512.

Copyright (c) 2000 The NetBSD Foundation, Inc.

All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Dieter Baron and
Thomas Klausner.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

ONNX Model Zoo

MIT License

Copyright (c) ONNX Project Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 174

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE

RESNET-50 Caffe models

The MIT License (MIT)

Copyright (c) 2016 Shaoqing Ren

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

OpenSSL

Apache License Version 2.0

Copyright (c) OpenSSL Project Contributors

Apache License

Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.

https://www.apache.org/licenses/

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 175

"Legal Entity" shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of
this definition, "control" means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted
by this License.

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of authorship.
For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of the copyright owner.
For the purposes of this definition, "submitted" means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not
limited to communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

 2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form.

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 176

 3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license
applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the
Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work
shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

 a). You must give any other recipients of the Work or Derivative Works a copy of this
License; and

 b). You must cause any modified files to carry prominent notices stating that You changed
the files; and

 c). You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

 d). If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to
any part of the Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within the Source form
or documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the Work,
provided that such additional attribution notices cannot be construed as modifying the
License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 177

any separate license agreement you may have executed with Licensor regarding such
Contributions.

 6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing the Work
and assume any risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS

Boost Beast

Copyright (c) 2016-2017 Vinnie Falco (vinnie dot falco at gmail dot com)

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of
the software and accompanying documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative
works of the Software, and to permit third-parties to whom the Software is furnished to do so,
all subject to the following:

Appendix

NVIDIA TensorRT PG-08540-001_v8.4.0. Early Access (EA) | 178

The copyright notices in the Software and this entire statement, including the above license
grant, this restriction and the following disclaimer, must be included in all copies of the
Software, in whole or in part, and all derivative works of the Software, unless such copies
or derivative works are solely in the form of machine-executable object code generated by a
source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. "ARM" is used to represent
ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France
SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Blackberry/QNX

Copyright © 2020 BlackBerry Limited. All rights reserved.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are the trademarks or registered
trademarks of BlackBerry Limited, used under license, and the exclusive rights to such trademarks are expressly reserved.

Google

Android, Android TV, Google Play and the Google Play logo are trademarks of Google, Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and CUDA, DALI, DRIVE, JetPack, Jetson AGX Xavier, Jetson Nano, Kepler, Maxwell, NGC, Nsight, Orin, Pascal, Quadro, Tegra, TensorRT,
Triton, Turing and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product
names may be trademarks of the respective companies with which they are associated.

Copyright
© 2017-2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	1.1. Structure of this Guide
	1.2. Samples
	1.3. Complementary GPU Features
	1.4. Complementary Software
	1.5. ONNX
	1.6. Code Analysis Tools
	1.7. API Versioning
	1.8. Deprecation Policy
	1.9. Support
	1.10. How Do I Report A Bug?

	TensorRT’s Capabilities
	2.1. C++ and Python APIs
	2.2. The Programming Model
	2.2.1. The Build Phase
	2.2.2. The Runtime Phase

	2.3. Plugins
	2.4. Types and Precision
	2.5. Quantization
	2.6. Tensors and Data Formats
	2.7. Dynamic Shapes
	2.8. DLA
	2.9. Updating Weights
	2.10. trtexec
	2.11. Polygraphy

	The C++ API
	3.1. The Build Phase
	3.1.1. Creating a Network Definition
	3.1.2. Importing a Model using the ONNX Parser
	3.1.3. Building an Engine

	3.2. Deserializing a Plan
	3.3. Performing Inference

	The Python API
	4.1. The Build Phase
	4.1.1. Creating a Network Definition in Python
	4.1.2. Importing a Model using the ONNX Parser
	4.1.3. Building an Engine

	4.2. Deserializing a Plan
	4.3. Performing Inference

	How TensorRT Works
	5.1. Object Lifetimes
	5.2. Error Handling and Logging
	5.3. Memory
	5.3.1. The Build Phase
	5.3.2. The Runtime Phase

	5.4. Threading
	5.5. Determinism

	Advanced Topics
	6.1. The Timing Cache
	6.2. Refitting An Engine
	6.3. Algorithm Selection and Reproducible Builds
	6.4. Creating A Network Definition From Scratch
	6.4.1. C++
	6.4.2. Python

	6.5. Reduced Precision
	6.5.1. Network-level Control of Precision
	6.5.2. Layer-level Control of Precision
	6.5.3. Enabling TF32 Inference Using C++

	6.6. I/O Formats
	6.7. Compatibility of Serialized Engines
	6.8. Explicit vs Implicit Batch
	6.9. Sparsity
	6.10. Empty Tensors
	6.11. Reusing Input Buffers
	6.12. Engine Inspector

	Working With INT8
	7.1. Introduction to Quantization
	7.1.1. Quantization Workflows
	7.1.2. Explicit vs Implicit Quantization
	7.1.3. Per-Tensor and Per-Channel Quantization

	7.2. Setting Dynamic Range
	7.3. Post-Training Quantization using Calibration
	7.3.1. INT8 Calibration Using C++
	7.3.2. Calibration Using Python

	7.4. Explicit Quantization
	7.4.1. Quantized Weights
	7.4.2. ONNX Support
	7.4.3. TensorRT Processing Of Q/DQ Networks
	7.4.4. Q/DQ Layer-Placement Recommendations
	7.4.5. Q/DQ Limitations
	7.4.6. QAT Networks Using TensorFlow
	7.4.6.1. Converting TensorFlow To ONNX Quantized Models
	7.4.6.1.1. TF1

	7.4.7. QAT Networks Using PyTorch

	7.5. INT8 Rounding Modes

	Working With Dynamic Shapes
	8.1. Specifying Runtime Dimensions
	8.2. Optimization Profiles
	8.2.1. Bindings For Multiple Optimization Profiles

	8.3. Layer Extensions For Dynamic Shapes
	8.4. Restrictions For Dynamic Shapes
	8.5. Execution Tensors vs. Shape Tensors
	8.5.1. Formal Inference Rules

	8.6. Shape Tensor I/O (Advanced)
	8.7. INT8 Calibration With Dynamic Shapes

	Extending TensorRT With Custom Layers
	9.1. Adding Custom Layers Using The C++ API
	9.1.1. Example: Adding A Custom Layer With Dynamic Shape Support Using C++
	9.1.2. Example: Adding A Custom Layer With INT8 I/O Support Using C++

	9.2. Adding Custom Layers Using The Python API
	9.2.1. Example: Adding A Custom Layer To A TensorRT Network Using Python

	9.3. Using Custom Layers When Importing A Model With A Parser
	9.4. Plugin API Description
	9.4.1. Migrating Plugins From TensorRT 6.x Or 7.x To TensorRT 8.x.x
	9.4.2. IPluginV2 API Description
	9.4.3. IPluginCreator API Description

	9.5. Best Practices For Custom Layers Plugin

	Working With Loops
	10.1. Defining A Loop
	10.2. Formal Semantics
	10.3. Nested Loops
	10.4. Limitations
	10.5. Replacing IRNNv2Layer With Loops

	Working With Conditionals
	11.1. Defining A Conditional
	11.2. Conditional Execution
	11.3. Nesting and Loops
	11.4. Limitations
	11.5. Conditional Examples
	11.5.1. Simple If-Conditional
	11.5.2. Exporting from PyTorch

	Working With DLA
	12.1. Running On DLA During TensorRT Inference
	12.1.1. Example: sampleMNIST With DLA
	12.1.2. Example: Enable DLA Mode For A Layer During Network Creation

	12.2. DLA Supported Layers
	12.3. GPU Fallback Mode
	12.4. I/O Formats on DLA
	12.5. DLA Standalone Mode
	12.6. Customizing DLA Memory Pools

	Performance Best Practices
	13.1. Measuring Performance
	13.1.1. Wall-clock Timing
	13.1.2. CUDA Events
	13.1.3. Built-In TensorRT Profiling
	13.1.4. CUDA Profiling Tools
	13.1.5. Tracking Memory

	13.2. Optimizing TensorRT Performance
	13.2.1. Batching
	13.2.2. Streaming
	13.2.3. CUDA Graphs
	13.2.4. Enabling Fusion
	13.2.4.1. Layer Fusion
	13.2.4.2. Types Of Fusions
	13.2.4.3. PointWise Fusion
	13.2.4.4. Q/DQ Fusion

	13.3. Optimizing Layer Performance
	13.4. Optimizing for Tensor Cores
	13.5. Optimizing Plugins
	13.6. Optimizing Python Performance
	13.7. Improving Model Accuracy

	Troubleshooting
	14.1. FAQs
	14.2. Understanding Error Messages
	14.3. Code Analysis Tools
	14.3.1. Compiler Sanitizers
	14.3.1.1. Issues With dlopen And Address Sanitizer
	14.3.1.2. Issues With dlopen And Thread Sanitizer
	14.3.1.3. Issues With CUDA And Address Sanitizer

	14.3.2. Valgrind

	Appendix
	A.1. TensorRT Layers
	A.1.1. IActivationLayer
	A.1.2. IAssertionLayer
	A.1.3. IConcatenationLayer
	A.1.4. IConditionLayer
	A.1.5. IConstantLayer
	A.1.6. IConvolutionLayer
	A.1.7. IDeconvolutionLayer
	A.1.8. IDequantizeLayer
	A.1.9. IEinsumLayer
	A.1.10. IElementWiseLayer
	A.1.10.1. ElementWise Layer Setup

	A.1.11. IFillLayer
	A.1.12. IFullyConnectedLayer
	A.1.13. IGatherLayer
	A.1.14. IIdentityLayer
	A.1.15. IIfConditionalBoundaryLayer
	A.1.16. IIfConditionalOutputLayer
	A.1.17. IIfConditionalInputLayer
	A.1.18. IIteratorLayer
	A.1.19. ILoopBoundaryLayer
	A.1.20. ILoopOutputLayer
	A.1.21. ILRNLayer
	A.1.22. IMatrixMultiplyLayer
	A.1.22.1. MatrixMultiply Layer Setup

	A.1.23. IParametricReluLayer
	A.1.24. IPaddingLayer
	A.1.25. IPluginV2Layer
	A.1.26. IPoolingLayer
	A.1.27. IQuantizeLayer
	A.1.28. IRaggedSoftMaxLayer
	A.1.29. IRecurrenceLayer
	A.1.30. IReduceLayer
	A.1.31. IResizeLayer
	A.1.32. IRNNv2Layer
	A.1.32.1. RNNv2 Layer Setup
	A.1.32.2. RNNv2 Layer - Optional Inputs

	A.1.33. IScaleLayer
	A.1.34. IScatterLayer
	A.1.35. ISelectLayer
	A.1.36. IShapeLayer
	A.1.37. IShuffleLayer
	A.1.38. ISliceLayer
	A.1.39. ISoftMaxLayer
	A.1.40. ITopKLayer
	A.1.40.1. TopK Layer Setup

	A.1.41. ITripLimitLayer
	A.1.42. IUnaryLayer

	A.2. Data Format Descriptions
	A.3. Command-Line Programs
	A.3.1. trtexec
	A.3.1.1. Benchmarking Network
	A.3.1.2. Serialized Engine Generation
	A.3.1.3. trtexec
	A.3.1.4. Commonly used command-line flags

	A.4. Glossary
	A.5. ACKNOWLEDGEMENTS

