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Abstract

Being effective and efficient is essential to an object de-
tector for practical use. To meet these two concerns, we
comprehensively evaluate a collection of existing refine-
ments to improve the performance of PP-YOLO while al-
most keep the infer time unchanged. This paper will analyze
a collection of refinements and empirically evaluate their
impact on the final model performance through incremental
ablation study. Things we tried that didn’t work will also be
discussed. By combining multiple effective refinements, we
boost PP-YOLO’s performance from 45.9% mAP to 49.5%
mAP on COCO2017 test-dev. Since a significant margin of
performance has been made, we present PP-YOLOv2. In
terms of speed, PP-YOLOv2 runs in 68.9FPS at 640x640
input size. Paddle inference engine with TensorRT, FP16-
precision and batch size = 1 further improves PP-YOLOv2’s
infer speed, which achieves 106.5 FPS. Such a performance
surpasses existing object detectors with roughly the same
amount of parameters (i.e., YOLOv4-CSP, YOLOv5l). Be-
sides, PP-YOLOv2 with ResNet101 achieves 50.3% mAP
on COCO2017 test-dev. Source code is at https://
github.com/PaddlePaddle/PaddleDetection.

1. Introduction

Object detection is a critical component of various real-
world applications such as self-driving cars, face recog-
nition, and person re-identification. In recent years, the
performance of object detectors has been rapidly im-
proved with the rise of deep convolutional neural networks
(CNNs) [23, 8, 10]. Although, recent works focus on novel
detection pipeline (i.e., Cascade RCNN [2] and HTC [3]),
sophisticated network architecture design (DetectoRS [19]
and CBNET [15]) push forward the state-of-the-art object

Figure 1. Comparison of the proposed PP-YOLOv2 and other
object detectors. With a similar FPS, PP-YOLOv2 outperforms
YOLOv5l by 1.3% mAP. Besides, when we replace PP-YOLOv2’s
backbone from ResNet50 to ResNet101, PP-YOLOv2 achieves
comparable performance with YOLOv5x while it is 15.9% faster
than YOLOv5x. The data is recorded in Table 2.

detection approaches, YOLOv3 [20] is still one of the most
widely used detector in industry. Because, in various prac-
tical applications, not only the computation resources are
limited, but also the software support is insufficient. With-
out necessary technique support, two stage object detec-
tor(e.g. Faster RCNN [21], Cascade RCNN [2]) may excru-
ciatingly slow. Meanwhile, a significant gap exists between
the accuracy of YOLOv3 and two stage object detectors.
Therefore, how to improve the effectiveness of YOLOv3
while maintaining the inference speed is an essential prob-
lem for practical use. To simultaneously satisfy two con-
cerns, we add a bunch of refinements that almost not in-
crease the infer time to improve the overall performance of
the PP-YOLO [16]. To note that, although a huge number
of approaches claim to improve object detector’s accuracy
independently, in practice, some methods are not effective
when combined. Therefore, practical testing of combina-
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tions of such tricks is required. We follow the incremental
manner to evaluate their effectiveness one by one. All our
experiments are implemented based on PaddlePaddle1 [17].

In fact, this paper is more like a TECH REPORT, which
tells you how to build PP-YOLOv2 step by step. Theoret-
ical justification of the failure cases is also involved. To
this end, we achieve a better balance between effectiveness
(49.5% mAP) and efficiency (69 FPS), surpassing existing
robust detectors with roughly the same amount of parame-
ters such as YOLOv4-CSP [26] and YOLOv5l2. Hopefully,
our experience in building PP-YOLOv2 can help develop-
ers and researchers to think deeper in implementing object
detectors for practical applications.

2. Revisit PP-YOLO
In this section, we will perform the implementation of

our baseline model specifically.
Pre-Processing. Apply Mixup Training [27] with a
weight sampled from Beta(α, β) distribution where α =
1.5, β = 1.5. Then, RandomColorDistortion, Random-
Expand, RandCrop and RandomFlip are applied one by
one with probability 0.5. Next, Normalize RGB channels
by subtracting 0.485, 0.456, 0.406 and dividing by 0.229,
0.224, 0.225, respectively. Finally, The input size is evenly
drawn from [320, 352, 384, 416, 448, 480, 512, 544, 576,
608].
Baseline Model. Our baseline model is PP-YOLO which
is an enhanced version of YOLOv3. Specifically, it first re-
places the backbone to ResNet50-vd[9]. After that a total of
10 tricks which can improve the performance of YOLOv3
almost without losing efficiency are added to YOLOv3 such
as Deformable Conv [5], SSLD [4], CoordConv [12], Drop-
Block [6], SPP [7] and so on. The architecture of PP-YOLO
is presented in the paper [16].
Training Schedule. On COCO train2017, the network is
trained with stochastic gradient descent (SGD) for 500K
iterations with a minibatch of 96 images distributed on 8
GPUs. The learning rate is linearly increased from 0 to
0.005 in 4K iterations, and it is divided by 10 at itera-
tion 400K and 450K, respectively. Weight decay is set as
0.0005, and momentum is set as 0.9. Gradient clipping is
adopted to stable the training procedure.

3. Selection of Refinements

Path Aggregation Network. Detecting objects at differ-
ent scales is a fundamental challenge in object detection. In
practice, a detection neck is developed for building high-
level semantic feature maps at all scales. In PP-YOLO,
FPN is adopted to compose bottom-up paths. Recently, sev-

1https://github.com/PaddlePaddle/Paddle
2https://github.com/ultralytics/yolov5

eral FPN variants have been proposed to enhance the abil-
ity of pyramid representation. For example, BiFPN [24],
PAN [14], RFP [19] and so on. We follow the design of
PAN to aggregate the top-down information. The detailed
structure of PAN is shown in Fig. 2.

Mish Activation Function. Mish activation function [18]
has been proved effective in many practical detectors, such
as YOLOv4 and YOLOv5. They adopt the mish activa-
tion function in the backbone. However, we prefer to use
pre-trained parameters because we have a powerful model
which achieves 82.4% top-1 accuracy on ImageNet. To
keep the backbone unchanged, we apply the mish activation
function in the detection neck instead of the backbone.

Larger Input Size. Increasing the input size enlarges the
area of objects. Thus, information of the objects on a small
scale will be preserved easier than before. As a result, per-
formance will be increased. However, a larger input size
occupies more memory. To apply this trick, we need to de-
crease batch size. To be more specific, we reduce the batch
size from 24 images per GPU to 12 images per GPU and
expand the largest input size from 608 to 768. The input
size is evenly drawn from [320, 352, 384, 416, 448, 480,
512, 544, 576, 608, 640, 672, 704, 736, 768].

IoU Aware Branch. In PP-YOLO, IoU aware loss is calcu-
lated in a soft weight format which is inconsistent with the
original intention. Therefore, we apply a soft label format.
Here is the IoU aware loss:

loss = −t ∗ log(σ(p))− (1− t) ∗ log(1− σ(p)) (1)

where t indicates the IoU between the anchor and its
matched ground-truth bounding box, p is the raw output
of IoU aware branch, σ(·) refers to the sigmoid activation
function. To note that only positive samples’ IoU aware
loss is computed. By replacing the loss function, IoU aware
branch works better than before.

4. Experiments
4.1. Dataset

COCO [11] is a widely used benchmark in the field of
object detection. In this work, we train all our models on
the COCO train2017 which consists of 118k images across
80 classes. For evaluation, we evaluate our results on the
COCO minival which consists of 5k testing images. Our
evaluation metric also follows the standard COCO style
mean Average Precision (mAP).

4.2. Ablation Studies

In this subsection, we present the effectiveness of each
module in an incremental manner. Results are shown in Ta-
ble 1, where infer time and FPS only consider the influence
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Figure 2. The architecture of PP-YOLOv2’s detection neck.

Methods mAP Parameters GFLOPs infer time FPS
A PP-YOLO 45.1 45 M 45.1 13.7 ms† 72.9
B A + PAN + MISH 47.1 54 M 52.0 14.0 ms 71.4
C B + input size 640 47.7 54 M 57.6 14.5 ms 68.9
D C + Larger input size 48.3 54 M 57.6 14.5 ms 68.9
E D + IoU Aware Branch 49.1 54 M 57.6 14.5 ms 68.9

Table 1. The ablation study of refinements on the MS-COCO minival split. ”†” indicates the result includes bounding box decode
time(1˜2ms).

of the model in FP32-precision which does not include re-
sult decoder and NMS following YOLOv4[1].

A. First of all, we follow the original design of PP-YOLO
to build our baseline. Since the heavy pre-processing on the
CPU slows down the training, we decrease the images per
GPU from 24 to 12. Reducing batch size drops mAP by
0.2%. Training settings are described in section 2 entirely.

A → B. The first refinement with a positive effect on PP-
YOLO that we found was PAN. To stable the training pro-
cess, we add several skip connections to our PAN module.
The detailed structure of PAN is shown in Fig. 2. We can
see that PAN and FPN are a group of symmetrical struc-
tures. When we perform it with Mish, it boosts the perfor-
mance from 45.1% mAP to 47.1% mAP. Although model B
is slightly slower than model A, such a significant gain pro-
motes us to adopt PAN in our final model. For more details,
please refer to our code.

B→ C. Since the input size of YOLOv4 and YOLOv5 dur-
ing evaluation is 640, we increase training and evaluation
input size to 640 to build a fair comparison. The perfor-
mance increases 0.6% mAP.

C→ D. Keep increasing the input size should benefit more.
However, it is impossible to use Larger Input Size and
Larger Batch Size together. We train the model D with 12
images per GPU and Larger Input Size. It increases the
mAP by 0.6% which brings more gains than Larger Batch
Size. Therefore, we choose Larger Input Size in the final
practice. The input size is evenly drawn from [320, 352,
384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736,
768].

D→ E. In the training phase, the modified IoU aware loss
performs better than before. In the former version, the value
of IoU aware loss will drop to 1e-5 in hundreds of iterations
during training. After we modified the IoU aware loss, its
value and the value of IoU loss are in the same order of
magnitude, which is reasonable. After using this strategy,
the mAP of model E increases to 49.1% without any loss of
efficiency.

4.3. Comparison With Other State-of-the-Art De-
tectors

Comparison of the results on MS-COCO test split with
other state-of-the-art object detectors is shown in Figure

3



Method Backbone Size FPS (V100) AP AP50 AP75 APS APM APLw/o TRT with TRT
YOLOv3 + ASFF* [13] Darknet-53 320 60 - 38.1% 57.4% 42.1% 16.1% 41.6% 53.6%
YOLOv3 + ASFF* [13] Darknet-53 416 54 - 40.6% 60.6% 45.1% 20.3% 44.2% 54.1%
YOLOv3 + ASFF* [13] Darknet-53 608 45.5 - 42.4% 63.0% 47.4% 25.5% 45.7% 52.3%
YOLOv3 + ASFF* [13] Darknet-53 800 29.4 - 43.9% 64.1% 49.2% 27.0% 46.6% 53.4%
EfficientDet-D0 [24] Efficient-B0 512 98.0+ - 33.8% 52.2% 35.8% 12.0% 38.3% 51.2%
EfficientDet-D1 [24] Efficient-B1 640 74.1+ - 39.6% 58.6% 42.3% 17.9% 44.3% 56.0%
EfficientDet-D2 [24] Efficient-B2 768 56.5+ - 43.0% 62.3% 46.2% 22.5% 47.0% 58.4%
EfficientDet-D2 [24] Efficient-B3 896 34.5+ - 45.8% 65.0% 49.3% 26.6% 49.4% 59.8%
YOLOv4 [1] CSPDarknet-53 416 96 164.0∗ 41.2% 62.8% 44.3% 20.4% 44.4% 56.0%
YOLOv4 [1] CSPDarknet-53 512 83 138.4∗ 43.0% 64.9% 46.5% 24.3% 46.1% 55.2%
YOLOv4 [1] CSPDarknet-53 608 62 105.5∗ 43.5% 65.7% 47.3% 26.7% 46.7% 53.3%
YOLOv4-CSP [26] Modified CSPDarknet53 512 97 - 46.2% 64.8% 50.2% 24.6% 50.4% 61.9%
YOLOv4-CSP [26] Modified CSPDarknet53 640 73 - 47.5% 66.2% 51.7% 28.2% 51.2% 59.8%
YOLOv5s - 640 113∗ - 36.7% 55.4% - - - -
YOLOv5m - 640 88.2∗ - 44.5% 63.1% - - - -
YOLOv5l - 640 69.8∗ - 48.2% 66.9% - - - -
YOLOv5x - 640 43.4∗ - 50.4% 68.8% - - - -
PP-YOLO [16] ResNet50-vd-dcn 320 132.2† 242.2† 39.3% 59.3% 42.7% 16.7% 41.4% 57.8%
PP-YOLO [16] ResNet50-vd-dcn 416 109.6† 215.4† 42.5% 62.8% 46.5% 21.2% 45.2% 58.2%
PP-YOLO [16] ResNet50-vd-dcn 512 89.9† 188.4† 44.4% 64.6% 48.8% 24.4% 47.1% 58.2%
PP-YOLO [16] ResNet50-vd-dcn 608 72.9† 155.6† 45.9% 65.2% 49.9% 26.3% 47.8% 57.2%
PP-YOLOv2 ResNet50-vd-dcn 320 123.3 152.9 43.1% 61.7% 46.5% 19.7% 46.3% 61.8%
PP-YOLOv2 ResNet50-vd-dcn 416 102 145.1 46.3% 65.1% 50.3% 23.9% 50.2% 62.2%
PP-YOLOv2 ResNet50-vd-dcn 512 93.4 141.2 48.2% 67.1% 52.7% 27.7% 52.1% 62.1%
PP-YOLOv2 ResNet50-vd-dcn 608 72.1 109.9 49.2% 68.0% 54.1% 29.9% 52.8% 61.5%
PP-YOLOv2 ResNet50-vd-dcn 640 68.9 106.5 49.5% 68.2% 54.4% 30.7% 52.9% 61.2%
PP-YOLOv2 ResNet101-vd-dcn 512 69.8 116.8 49.0% 67.8% 53.8% 28.7% 53.0% 63.5%
PP-YOLOv2 ResNet101-vd-dcn 640 50.3 87.0 50.3% 69.0% 55.3% 31.6% 53.9% 62.4%

Table 2. Comparison of the speed and accuracy of different object detectors on the MS-COCO (test-dev 2017). We compare the results
with batch size = 1, without tensorRT (w/o TRT) or with tensorRT(with TRT). Results marked by ”+” are updated results from the
corresponding official code base. Results marked by ”*” are test in our environment using official code and model. ”†” indicates the result
includes bounding box decode time(1˜2ms). The backbone of YOLOv5 has not been named yet, so we leave it blank.

1 and Table 2. We compare our method with YOLOv4-
CSP and YOLOv5l because they have roughly the same
amount of parameters as our model. It clearly shows
that PP-YOLOv2 outperforms these two methods. With
a similar FPS, PP-YOLOv2 outperforms YOLOv4-CSP
by 2% mAP and surpasses YOLOv5l by 1.3% mAP. Be-
sides, when we replace PP-YOLOv2’s backbone from
ResNet50 to ResNet101, PP-YOLOv2 achieves comparable
performance with YOLOv5x while it is 15.9% faster than
YOLOv5x. Therefore, we can draw a conclusion that com-
pared with other state-of-the-art methods, our PP-YOLOv2
has certain advantages in the balance of speed and accuracy.

Moreover, PP-YOLOv2 is implemented based on Pad-
dlePaddle. As a deep learning framework, PaddlePaddle
not only supports model implementation but also pays at-
tention to model deployment. With official support, adapt-
ing TensorRT for PP-YOLOv2 is much easier than other
detectors. Specifically, the Paddle inference engine with
TensorRT, FP16-precision, and batch size = 1 further im-
proves PP-YOLOv2’s infer speed. The speed-up ratios for
PP-YOLOv2(R50) and PP-YOLOv2(R101) are 54.6% and
73%, respectively.

5. Things We Tried That Didn’t Work

Since it takes about 80 hours for training PP-YOLO with
8 V100 GPUs on COCO train2017, we involve COCO
minitrain [22] to speed up our analysis on ablation stud-
ies. COCO minitrain is a subset of the COCO train2017,
containing 25K images. On COCO minitrain, the total it-
erations is 90K. We divide the learning rate by 10 at itera-
tion 60k. Other settings are the same as training on COCO
train2017.

We tried lots of stuff while we were working on PP-
YOLOv2. Some of them have a positive effect on COCO
minitrain while hinders the performance when training on
COCO train2017. Due to the inconsistency, someone may
doubt the experimental conclusion on COCO minitrain.The
reason why we use COCO minitrain is that we want to seek
refinements with universal features, which means that they
should be useful on different scale datasets. It is also im-
portant to figure out the reason why they failed. Therefore,
we discuss some of them in this section.
Cosine Learning Rate Decay. Different from linear step
learning rate decay, cosine learning rate decay is exponen-
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tially decaying the learning rate. Therefore, the change of
the learning rate is smooth, which benefits the training pro-
cess. We follow the formula in Bag of Tricks [9] to set learn-
ing rate at each epoch. Although cosine learning rate decay
achieves better performance on COCO minitrain, it is sen-
sitive to hyper-parameters such as initial learning rate, the
number of warm up steps, and the ending learning rate. We
tried several sets of hyper-parameters. However, we didn’t
observe a positive effect on COCO train2017 eventually.
Backbone Parameter Freezing. When fine-tuning the Im-
ageNet pre-trained parameters on downstream tasks, freez-
ing parameters in the first two stages is a common practice.
Since our pre-trained ResNet50-vd is much powerful than
others(82.4% Top1 accuracy versus 79.3% Top1 accuracy),
we are more motivated to adopt this strategy. On COCO
minitrain, parameter freezing brings 1mAP gain, however,
on COCO train2017 it decreases mAP by 0.8% . A possi-
ble reason for the inconsistency phenomena was speculated
to be the different sizes of the two training sets. COCO
minitrain is a fifth of COCO train2017. The ability to gen-
eralization of parameters that are trained on a small dataset
may be worse than pre-trained parameters.
SiLU Activation Function. We tried using SiLU [25]
instead of Mish in detection neck. This increases 0.3%
mAP on COCO minitrain but drops 0.5% mAP on COCO
train2017. We are not sure about the reason.

6. Conclusions
This paper presents some updates to PP-YOLO, which

forms a high-performance object detector called PP-
YOLOv2. PP-YOLOv2 achieves a better balance between
speed and accuracy than other famous detectors, such as
YOLOv4 and YOLOv5. In this paper, we explore a bunch
of tricks and show how to combine these tricks on the PP-
YOLO detector and demonstrate their effectiveness. More-
over, with PaddlePaddle’s official support, the gap be-
tween model development and production deployment is
narrowed. We hope this paper can help developers and re-
searchers get better performance in practical scenes.
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