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Figure 1: Example of space-time video super-resolution. We propose a one-stage space-time video super-resolution
(STVSR) network to directly predict high frame rate (HFR) and high-resolution (HR) frames from the corresponding low-
resolution (LR) and low frame rate (LFR) frames without explicitly interpolating intermediate LR frames. A HR intermediate
frame t and its neighboring low-resolution frames: t− 1 and t+ 1 as an overlayed image are shown. Compare to a state-of-
the-art two-stage method: DAIN [1]+EDVR [37] on the HR intermediate frame t, our method is more capable of handling
visual motions and therefore restores more accurate image structures and sharper edges. In addition, our network is more
than 3 times faster on inference speed with a 4 times smaller model size than the DAIN+EDVR.

Abstract

In this paper, we explore the space-time video super-
resolution task, which aims to generate a high-resolution
(HR) slow-motion video from a low frame rate (LFR), low-
resolution (LR) video. A simple solution is to split it into two
sub-tasks: video frame interpolation (VFI) and video super-
resolution (VSR). However, temporal interpolation and spa-
tial super-resolution are intra-related in this task. Two-
stage methods cannot fully take advantage of the natural
property. In addition, state-of-the-art VFI or VSR networks
require a large frame-synthesis or reconstruction module
for predicting high-quality video frames, which makes the
two-stage methods have large model sizes and thus be time-
consuming. To overcome the problems, we propose a one-
stage space-time video super-resolution framework, which
directly synthesizes an HR slow-motion video from an LFR,
LR video. Rather than synthesizing missing LR video frames

∗Equal contribution; †Equal advising.

as VFI networks do, we firstly temporally interpolate LR
frame features in missing LR video frames capturing local
temporal contexts by the proposed feature temporal inter-
polation network. Then, we propose a deformable ConvL-
STM to align and aggregate temporal information simulta-
neously for better leveraging global temporal contexts. Fi-
nally, a deep reconstruction network is adopted to predict
HR slow-motion video frames. Extensive experiments on
benchmark datasets demonstrate that the proposed method
not only achieves better quantitative and qualitative perfor-
mance but also is more than three times faster than recent
two-stage state-of-the-art methods, e.g., DAIN+EDVR and
DAIN+RBPN.

1. Introduction

Space-Time Video Super-Resolution (STVSR) [30] aims
to automatically generate a photo-realistic video sequence
with a high space-time resolution from a low-resolution and
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low frame rate input video. Since HR slow-motion videos
are more visually appealing containing fine image details
and clear motion dynamics, they are desired in rich applica-
tions, such as film making and high-definition television.

To tackle the problem, most existing works in previous
literatures [30, 22, 33, 28, 6, 14] usually adopt hand-crafted
regularization and make strong assumptions. For example,
space-time directional smoothness prior is adopted in [30],
and [22] assumes that there is no significant change in illu-
mination for the static pixels. However, these strong con-
straints make the methods have limited capacity in model-
ing various and diverse space-time visual patterns. Besides,
the optimization for these methods is usually computation-
ally expensive (e.g., ∼ 1 hour for 60 frames in [22]).

In recent years, deep convolutional neural networks have
shown promising efficiency and effectiveness in various
video restoration tasks, such as video frame interpolation
(VFI) [24], video super-resolution (VSR) [4], and video de-
blurring [32]. To design an STVSR network, one straight-
forward way is by directly combining a video frame interpo-
lation method (e.g., SepConv [25], ToFlow [40], DAIN [1]
etc.) and a video super-resolution method (e.g., DUF [11],
RBPN [8], EDVR [37] etc.) in a two-stage manner. It firstly
interpolates missing intermediate LR video frames with
VFI and then reconstructs all HR frames with VSR. How-
ever, temporal interpolation and spatial super-resolution in
STVSR are intra-related. The two-stage methods splitting
them into two individual procedures cannot make full use
of this natural property. In addition, to predict high-quality
video frames, both state-of-the-art VFI and VSR networks
require a big frame reconstruction network. Therefore, the
composed two-stage STVSR model will contain a large
number of parameters and is computationally expensive.

To alleviate the above issues, we propose a unified one-
stage STVSR framework to learn temporal interpolation
and spatial super-resolution simultaneously. We propose to
adaptively learn a deformable feature interpolation function
for temporally interpolating intermediate LR frame features
rather than synthesizing pixel-wise LR frames as in two-
stage methods. The learnable offsets in the interpolation
function can aggregate useful local temporal contexts and
help the temporal interpolation handle complex visual mo-
tions. In addition, we introduce a new deformable ConvL-
STM model to effectively leverage global contexts with si-
multaneous temporal alignment and aggregation. HR video
frames can be reconstructed from the aggregated LR fea-
tures with a deep SR reconstruction network. To this end,
the one-stage network can learn end-to-end to map an LR,
LFR video sequence to its HR, HFR space in a sequence-to-
sequence manner. Experimental results show that the pro-
posed one-stage STVSR framework outperforms state-of-
the-art two-stage methods even with much fewer parame-
ters. An example is illustrated in Figure 1.

The contributions of this paper are three-fold: (1) We
propose a one-stage space-time super-resolution network
that can address temporal interpolation and spatial SR
simultaneously in a unified framework. Our one-stage
method is more effective than two-stage methods taking
advantage of the intra-relatedness between the two sub-
problems. It is also computationally more efficient since
only one frame reconstruction network is required rather
than two large networks as in state-of-the-art two-stage ap-
proaches. (2) We propose a frame feature temporal interpo-
lation network leveraging local temporal contexts based on
deformable sampling for intermediate LR frames. We de-
vise a novel deformable ConvLSTM to explicitly enhance
temporal alignment capacity and exploit global temporal
contexts for handling large motions in videos. (3) Our one-
stage method achieves state-of-the-art STVSR performance
on both Vid4 [17] and Vimeo [40]. It is 3 times faster
than the two-stage network: DAIN [1] + EDVR [37] while
having a nearly 4× reduction in model size. The source
code is released in https://github.com/Mukosame/Zooming-
SlowMo-CVPR-2020.

2. Related Work

In this section, we discuss works on three related top-
ics: video frame interpolation (VFI), video super-resolution
(VSR), and space-time video super-resolution (STVSR).

Video Frame Interpolation The target of video frame
interpolation is to synthesize non-existent intermediate
frames in between the original frames. Meyer et al. [21] in-
troduced a phase-based frame interpolation method, which
generates intermediate frames through per-pixel phase mod-
ification. Long et al. [19] predicted intermediate frames di-
rectly with an encoder-decoder CNN. Niklaus et al. [24, 25]
regarded the frame interpolation as a local convolution over
the two input frames and used a CNN to learn a spatially-
adaptive convolution kernel for each pixel for high-quality
frame synthesis. To explicitly handle motions, there are also
many flow-based video interpolation approaches [10, 18,
23, 2, 1]. These methods usually have inherent issues with
inaccuracies and missing information from optical flow re-
sults. In our one-stage STVSR framework, rather than syn-
thesizing the intermediate LR frames as current VFI meth-
ods do, we interpolate features from two neighboring LR
frames to directly synthesize LR feature maps for missing
frames without requiring explicit supervision.

Video Super-Resolution Video super-resolution aims to
reconstruct an HR video frame from the corresponding LR
frame (reference frame) and its neighboring LR frames
(supporting frames). One key problem for VSR is how to
temporally align the LR supporting frames with the refer-
ence frame. Several VSR methods [4, 34, 26, 36, 40] use
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Figure 2: Overview of our one-stage STVSR framework. It directly reconstructs consecutive HR video frames without
synthesizing LR intermediate frames ILt . Feature temporal interpolation and bidirectional deformable ConvLSTM are utilized
to leverage local and global temporal contexts for better exploiting temporal information and handling large motions. Note
that we only show two input LR frames from a long sequence in this figure for a better illustration.

optical flow for explicit temporal alignment, which first es-
timates motions between the reference frame and each sup-
porting frame with optical flow and then warps the support-
ing frame using the predicted motion map. Recently, RBPN
proposes to incorporate the single image and multi-frame
SR for VSR in which flow maps are directly concatenated
with LR video frames. However, it is difficult to obtain
accurate flow; and flow warping also introduces artifacts
into the aligned frames. To avoid this problem, DUF [11]
with dynamic filters and TDAN [35] with deformable align-
ment were proposed for implicit temporal alignment with-
out motion estimation. EDVR [37] extends the deformable
alignment in TDAN by exploring multiscale information.
However, most of the above methods are many-to-one ar-
chitectures, and they need to process a batch of LR frames
to predict only one HR frame, which makes the meth-
ods computationally inefficient. Recurrent neural networks,
such as convolutional LSTMs [39] (ConvLSTM), can ease
sequence-to-sequence (S2S) learning; and they are adopted
in VSR methods [15, 9] for leveraging temporal informa-
tion. However, without explicit temporal alignment, the
RNN-based VSR networks have limited capability in han-
dling large and complex motions within videos. To achieve
efficient yet effective modeling, unlike existing methods,
we propose a novel ConvLSTM structure embedded with
an explicit state updating cell for space-time video super-
resolution.

Rather than simply combining a VFI network and a VSR
network to solve STVSR, we propose a more efficient and
effective one-stage framework that simultaneously learns
temporal feature interpolation and spatial SR without ac-
cessing to LR intermediate frames as supervision.

Space-Time Video Super-Resolution Shechtman et
al. [29] firstly proposed to extend SR to the space-time
domain. Since pixels are missing in LR frames and

even several entire LR frames are unavailable, STVSR
is a highly ill-posed inverse problem. To increase video
resolution both in time and space, [29] combines infor-
mation from multiple video sequences of dynamic scenes
obtained at sub-pixel and sub-frame misalignments with
a directional space-time smoothness regularization to
constrain the ill-posed problem. Mudenagudi [22] posed
STVSR as a reconstruction problem using the Maximum a
posteriori-Markov Random Field [7] with graph-cuts [3] as
the solver. Takeda et al. [33] exploited local orientation and
local motion to steer spatio-temporal regression kernels.
Shahar et al. [28] proposed to exploit a space-time patch
recurrence prior within natural videos for STVSR. How-
ever, these methods have limited capacity to model rich and
complex space-time visual patterns, and the optimization
for these methods is usually computationally expensive. To
address these issues, we propose a one-stage network to
directly learn the mapping between partial LR observations
and HR video frames and to achieve fast and accurate
STVSR.

3. Space-Time Video Super-Resolution
Given an LR, LFR video sequence: IL = {IL2t−1}n+1

t=1 ,
our goal is to generate the corresponding high-resolution
slow-motion video sequence: IH = {IHt }2n+1

t=1 . To inter-
mediate HR frames {IH2t}nt=1, there are no corresponding
LR counterparts in the input sequence. To fast and accu-
rately increase resolution in both space and time domains,
we propose a one-stage space-time super-resolution frame-
work: Zooming Slow-Mo as illustrated in Figure 2. The
framework mainly consists of four parts: feature extractor,
frame feature temporal interpolation module, deformable
ConvLSTM, and HR frame reconstructor.

We first use a feature extractor with a convolutional layer
and k1 residual blocks to extract feature maps: {FL

2t−1}n+1
t=1

from input video frames. Taking the feature maps as input,

3

inno
Highlight

inno
Highlight

inno
Highlight



Concat.
𝑔"

Conv

𝐹$%

𝐹"%

offset field

offsets

approximated 𝐹0%

Φ"

𝑇"(𝐹"%,Φ")

𝑇$(𝐹$%,Φ$)

blending

offsets

Concat. 𝑔$

Conv

Φ$

Deformable convolution

offset field

Figure 3: Frame feature temporal interpolation based on de-
formable sampling. Since approximated FL

2 will be used to
predict the corresponding HR frame, it will implicitly en-
force the learnable offsets to capture accurate local temporal
contexts and be motion-aware.

we then synthesize the LR feature maps: {FL
2t}nt=1 of inter-

mediate frames with the proposed frame feature interpola-
tion module. Furthermore, to better leverage temporal in-
formation, we use a deformable ConvLSTM to process the
consecutive feature maps: {FL

t }2n+1
t=1 . Unlike vanilla Con-

vLSTM, the proposed deformable ConvLSTM can simulta-
neously perform temporal alignment and aggregation. Fi-
nally, we reconstruct the HR slow-mo video sequence from
the aggregated feature maps.

3.1. Frame Feature Temporal Interpolation

Given extracted feature maps: FL
1 and FL

3 from input
LR video frames: IL1 and IL3 , we want to synthesize the fea-
ture map FL

2 corresponding to the missing intermediate LR
frame IL2 . Traditional video frame interpolation networks
usually perform temporal interpolation on pixel-wise video
frames, which will lead to a two-stage STVSR design. Un-
like previous methods, we propose to learn a feature tem-
poral interpolation function f(·) to directly synthesize the
intermediate feature map FL

2 (see Fig. 3). A general form
of the interpolation function can be formulated as:

FL
2 = f(FL

1 , F
L
3 ) = H(T1(FL

1 ,Φ1), T3(FL
3 ,Φ3)) , (1)

where T1(·) and T3(·) are two sampling functions and Φ1

and Φ3 are the corresponding sampling parameters; H(·) is
a blending function to aggregate sampled features.

For generating accurate FL
2 , the T1(·) should capture

forward motion information between FL
1 and FL

2 , and the
T3(·) should capture backward motion information between
FL
3 and FL

2 . However, the FL
2 is not available for comput-

ing forward and backward motion information in this task.
To alleviate this problem, we use motion information be-

tween FL
1 and FL

3 to approximate forward and backward

motion information. Inspired by recent deformable align-
ment in [35] for VSR, we propose to use deformable sam-
pling functions to implicitly capture motion information for
frame feature temporal interpolation. With exploring rich
local temporal contexts by deformable convolutions in sam-
pling functions, our feature temporal interpolation can even
handle very large motions in videos.

The two sampling functions share the same network de-
sign but have different weights. For simplicity, we use the
T1(·) as an example. It takes LR frame feature maps FL

1

and FL
3 as input to predict an offset for sampling the FL

1 :

∆p1 = g1([FL
1 , F

L
3 ]) , (2)

where ∆p1 is a learnable offset and also refers to the sam-
pling parameter: Φ1; g1 denotes a general function of sev-
eral convolution layers; [, ] denotes the channel-wise con-
catenation. With the learned offset, the sampling function
can be performed with a deformable convolution [5, 42]:

T1(FL
1 ,Φ1) = DConv(FL

1 ,∆p1) . (3)

Similarly, we can learn an offset ∆p3 = g3([FL
3 , F

L
1 ]) as

the sampling parameter: Φ3 and then obtain sampled fea-
tures T3(FL

3 ,Φ3) with a deformable convolution.
To blend the two sampled features, we use a simple linear

blending function H(·):

FL
2 = α ∗ T1(FL

1 ,Φ1) + β ∗ T3(FL
3 ,Φ3) , (4)

where α and β are two learnable 1× 1 convolution kernels
and ∗ is a convolution operator. Since the synthesized LR
feature map FL

2 will be used to predict the intermediate HR
frame IH2 , it will enforce the synthesized LR feature map to
be close to the real intermediate LR feature map. Therefore,
the two offsets ∆p1 and ∆p3 will implicitly learn to capture
the forward and backward motion information, respectively.

Applying the designed deformable temporal interpola-
tion function to {FL

2t−1}n+1
t=1 , we can obtain intermediate

frame feature maps {FL
2t}nt=1.

3.2. Deformable ConvLSTM

Now we have consecutive frame feature maps:
{FL

t }2n+1
t=1 for generating the corresponding HR video

frames, which will be a sequence-to-sequence mapping. It
has been proved in previous video restoration tasks [40, 34,
37] that temporal information is vital. Therefore, rather
than reconstructing HR frames from the corresponding indi-
vidual feature maps, we aggregate temporal contexts from
neighboring frames. ConvLSTM [39] is a popular 2D se-
quence data modeling method and we can adopt it to per-
form temporal aggregation. At the time step t, the ConvL-
STM updates hidden state ht and cell state ct with:

ht, ct = ConvLSTM(ht−1, ct−1, F
L
t ) . (5)
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Figure 4: Deformable ConvLSTM for better exploiting
global temporal contexts and handling fast motion videos.
At time step t, we introduce state updating cells to learn
deformable sampling to adaptively align hidden state ht−1

and cell state ct−1 with current input feature map: FL
t .

From its state updating mechanism [39], we can learn that
the ConvLSTM can only implicitly capture motions be-
tween previous states: ht−1 and ct−1 and the current input
feature map with small convolution receptive fields. There-
fore, ConvLSTM has limited ability to handle large mo-
tions in natural videos. If a video has large motions, there
will be a severe temporal mismatch between previous states
and FL

t . Then, ht−1 and ct−1 will propagate mismatched
“noisy” content rather than useful global temporal contexts
into ht. Consequently, the reconstructed HR frame IHt from
ht will suffer from annoying artifacts.

To tackle the large motion problem and effectively ex-
ploit global temporal contexts, we explicitly embed a state-
updating cell with deformable alignment into ConvLSTM
(see Fig. 4):

∆pht = gh([ht−1, F
L
t ]) ,

∆pct = gc([ct−1, F
L
t ]) ,

hat−1 = DConv(ht−1,∆p
h
t ) ,

cat−1 = DConv(ct−1,∆p
c
t) ,

ht, ct = ConvLSTM(hat−1, c
a
t−1, F

L
t ) ,

(6)

where gh and gc are general functions of several convolu-
tion layers, ∆pht and ∆pct are predicted offsets, and hat−1

and cat−1 are aligned hidden and cell states, respectively.
Compared with vanilla ConvLSTM, we explicitly enforce
the hidden state ht−1 and cell state ct−1 to align with the
current input feature map FL

t in our deformable ConvL-
STM, which makes it more capable of handling motions
in videos. Besides, to fully explore temporal information,
we use the Deformable ConvLSTM in a bidirectional man-
ner [27]. We feed temporally reversed feature maps into
the same Deformable ConvLSTM and concatenate hidden
states from forward pass and backward pass as the final hid-
den state ht2 for HR frame reconstruction.

3.3. Frame Reconstruction

To reconstruct HR video frames, we use a temporally
shared synthesis network, which takes individual hidden

2We use ht to denote final hidden state, but it will refer to a concate-
nated hidden state in the Bidirectional Deformable ConvLSTM.

state ht as input and outputs the corresponding HR frame.
It has k2 stacked residual blocks [16] for learning deep fea-
tures and utilizes a sub-pixel upscaling module with Pix-
elShuffle as in [31] to reconstruct HR frames {IHt }2n+1

t=1 .
To optimize our network, we use a reconstruction loss func-
tion:

lrec =
√
||IGT

t − IHt ||2 + ε2 , (7)

where IGT
t refers to the t-th ground-truth HR video frame,

Charbonnier penalty function [13] is used as the loss term,
and ε is empirically set to 1 × 10−3. Since the space and
time SR problems are intra-related in STVSR, our model
is end-to-end trainable and can simultaneously learn this
spatio-temporal interpolation with only supervision from
HR video frames.

3.4. Implementation Details

In our implementation, k1 = 5 and k2 = 40 residual
blocks are used in feature extraction and HR frame recon-
struction modules, respectively. We randomly crop a se-
quence of down-sampled image patches with the size of
32 × 32 and take out the odd-indexed 4 frames as LFR
and LR inputs, and the corresponding consecutive 7-frame
sequence of 4×3 size as supervision. Besides, we per-
form data augmentation by randomly rotating 90◦, 180◦ and
270◦, and horizontal-flipping. We adopt a Pyramid, Cascad-
ing and Deformable (PCD) structure in [37] to employ de-
formable alignment and apply Adam [12] optimizer, where
we decay the learning rate with a cosine annealing for each
batch [20] from 4e− 4 to 1e− 7. The batch size is set to be
24 and trained on 2 Nvidia Titan XP GPUs.

4. Experiments and Analysis

4.1. Experimental Setup

Datasets We use Vimeo-90K as the training set [40], in-
cluding more than 60,000 7-frame training video sequences.
The dataset is widely used in previous VFI and VSR works
[2, 1, 35, 8, 37]. Vid4 [17] and Vimeo testset [40] are used
as the evaluation datasets. To measure the performance
of different methods under different motion conditions, we
split the Vimeo testset into fast motion, medium motion,
and slow motion sets as in [8], which include 1225, 4977
and 1613 video clips, respectively. We remove 5 video clips
from the original medium motion set and 3 clips from the
slow motion set, which have consecutively all-black back-
ground frames that will lead to infinite values on PSNR. We
generate LR frames by bicubic with a downsampling fac-
tor 4 and use odd-indexed LR frames as input to predict the
corresponding consecutive HR and HFR frames.

3Considering recent state-of-the-art methods (e.g., EDVR [37] and
RBPN [8]) use only 4 as the upscaling factor, we adopt the same practice.
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Figure 5: Visual comparisons of different methods on video frames from Vid4 and Vimeo datasets. Our one-stage Zooming
SlowMo model can reconstruct more visually appealing HR video frames with more accurate image structures and fewer
blurring artifacts.

Evaluation Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM) [38] are adopted to evaluate
STVSR performance of different methods. To measure the
efficiency of different networks, we also compare the model
sizes and inference time of the entire Vid4 [17] dataset mea-
sured on one Nvidia Titan XP GPU.

4.2. Comparison to State-of-the-art Methods

We compare the performance of our one-stage Zooming
SlowMo network to two-stage methods composed of state-
of-the-art (SOTA) VFI and VSR networks. Three recent

SOTA VFI approaches, SepConv [25], Super-SloMo4 [10],
and DAIN [1], are compared. To achieve STVSR, three
SOTA SR models, including single-image SR model,
RCAN [41], and two recent VSR models, RBPN [8] and
EDVR [37], are used to generate HR frames from both orig-
inal LR and interpolated LR frames.

Quantitative results are shown in Table 1. From the ta-
ble, we can learn the following facts: (1) DAIN+EDVR is

4Since there is no official source code released, we used an unofficial
PyTorch implementation from https://github.com/avinashpaliwal/Super-
SloMo.
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Table 1: Quantitative comparison of our results and two-stage VFI and VSR methods on testsets. The best two results are
highlighted in red and blue colors, respectively. The total runtime is measured on the entire Vid4 dataset [17]. Note that we
omit the baseline models with Bicubic when comparing in terms of runtime.

VFI
Method

SR
Method

Vid4 Vimeo-Fast Vimeo-Medium Vimeo-Slow Parameters
(Million)

Runtime-VFI
(s)

Runtime-SR
(s)

Total
Runtime (s)

Average
Runtime (s/frame)PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SuperSloMo [10] Bicubic 22.84 0.5772 31.88 0.8793 29.94 0.8477 28.37 0.8102 19.8 0.28 - - -
SuperSloMo [10] RCAN [41] 23.80 0.6397 34.52 0.9076 32.50 0.8884 30.69 0.8624 19.8+16.0 0.28 68.15 68.43 0.4002
SuperSloMo [10] RBPN [8] 23.76 0.6362 34.73 0.9108 32.79 0.8930 30.48 0.8584 19.8+12.7 0.28 82.62 82.90 0.4848
SuperSloMo [10] EDVR [37] 24.40 0.6706 35.05 0.9136 33.85 0.8967 30.99 0.8673 19.8+20.7 0.28 24.65 24.93 0.1458

SepConv [25] Bicubic 23.51 0.6273 32.27 0.8890 30.61 0.8633 29.04 0.8290 21.7 2.24 - - -
SepConv [25] RCAN [41] 24.92 0.7236 34.97 0.9195 33.59 0.9125 32.13 0.8967 21.7+16.0 2.24 68.15 70.39 0.4116
SepConv [25] RBPN [8] 26.08 0.7751 35.07 0.9238 34.09 0.9229 32.77 0.9090 21.7+12.7 2.24 82.62 84.86 0.4963
SepConv [25] EDVR [37] 25.93 0.7792 35.23 0.9252 34.22 0.9240 32.96 0.9112 21.7+20.7 2.24 24.65 26.89 0.1572

DAIN [1] Bicubic 23.55 0.6268 32.41 0.8910 30.67 0.8636 29.06 0.8289 24.0 8.23 - - -
DAIN [1] RCAN [41] 25.03 0.7261 35.27 0.9242 33.82 0.9146 32.26 0.8974 24.0+16.0 8.23 68.15 76.38 0.4467
DAIN [1] RBPN [8] 25.96 0.7784 35.55 0.9300 34.45 0.9262 32.92 0.9097 24.0+12.7 8.23 82.62 90.85 0.5313
DAIN [1] EDVR [37] 26.12 0.7836 35.81 0.9323 34.66 0.9281 33.11 0.9119 24.0+20.7 8.23 24.65 32.88 0.1923

Ours 26.31 0.7976 36.81 0.9415 35.41 0.9361 33.36 0.9138 11.10 - - 10.36 0.0606

the best performing two-stage approach among the com-
pared 12 methods; (2) VFI matters, especially for fast mo-
tion videos. Although RBPN and EDVR perform much
better than RCAN for VSR, however, when equipped with
more advanced VFI network DAIN, DAIN+RCAN can
achieve comparable or even better performance than Sep-
Conv+RBPN and SepConv+EDVR on the Vimeo -Fast set;
(3) VSR also matters. For example, with the same VFI net-
work: DAIN, EDVR consistently achieves better STVSR
performance than other VSR methods. In addition, we
can see that our network outperforms the DAIN+EDVR
by 0.19dB on Vid4, 0.25dB on Vimeo-Slow, 0.75dB on
Vimeo-Medium, and 1dB on Vimeo-Fast in terms of PSNR.
The significant improvements obtained on videos with fast
motions demonstrate that our one-stage network with si-
multaneously leveraging local and global temporal contexts
is more capable of handling diverse spatio-temporal pat-
terns, including challenging large motions in videos than
two-stage methods.

Moreover, we also investigate model sizes and runtime
of different networks in Table 1. For synthesizing high-
quality frames, SOTA VFI and VSR networks usually have
very large frame reconstruction modules. Thus, the com-
posed two-stage SOTA STVSR networks will contain a
huge number of parameters. With only one frame recon-
struction module, our one-stage model has much fewer pa-
rameters than the SOTA two-stage networks. From Table 1,
we can see that it is more than 4× and 3× smaller than the
DAIN+EDVR and DAIN+RBPN, respectively. The small
model size makes our network more than 3× faster than
the DAIN+EDVR and 8× faster than DAIN+RBPN. Com-
pared to two-stage methods with a fast VFI network: Su-
perSlowMo, our method is still more than 2× faster.

Visual results of different methods are illustrated in Fig-
ure 5. We see that our method achieves noticeably vi-
sual improvements over other two-stage methods. Clearly,
the proposed network can synthesize visually appealing
HR video frames with more fine details, more accurate

Overlayed LR HR

w/o DFI@model (a) w/ DFI@model (b)

Figure 6: Ablation study on feature interpolation. The naive
feature interpolation model without deformable sampling
will obtain overly smooth results for videos with fast mo-
tions. With the proposed deformable feature interpolation
(DFI), our model can well exploit local contexts in adjacent
frames, thus is more effective in handling large motions.

structures, and fewer blurring artifacts even for challeng-
ing fast motion video sequences. We also observe that
current SOTA VFI methods: SepConv and DAIN fail to
handle large motions. Consequently, two-stage networks
tend to generate HR frames with severe motion blurs. In
our one-stage framework, we simultaneously learn temporal
and spatial SR with exploring the natural intra-relatedness.
Even with a much smaller model, our network can well ad-
dress the large motion issue in temporal SR.

4.3. Ablation Study

We have already shown the superiority of our one-stage
framework over two-stage networks. To further demon-
strate the effectiveness of different modules in our network,
we make a comprehensive ablation study.

Effectiveness of Deformable Feature Interpolation To
investigate the proposed deformable feature interpolation
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Overlayed LR HR w/ DFI w/ DFI+ConvLSTM w/ DFI+DConvLSTM

Figure 7: Ablation study on Deformable ConvLSTM (DConvLSTM). ConvLSTM will fail when meeting videos with fast
motions. Embedded with state updating cells, the proposed DConvLSTM is more capable of leveraging global temporal
contexts for reconstructing more accurate visual content even for fast motion videos.

Table 2: Ablation study on the proposed modules. Proposed
deformable feature interpolation network and deformable
ConvLSTM can effectively handle motions and improve
STVSR performance, while the vanilla ConvLSTM per-
forms worse when meeting large motions in videos.

Method (a) (b) (c) (d) (e)
Naive feature interpolation

√

Deformable feature interpolation (DFI)
√ √ √ √

ConvLSTM
√

Deformable ConvLSTM (DConvLSTM)
√

Bidirectional DConvLSTM
√

Vid4 (slow motion) 25.18 25.34 25.68 26.18 26.31
Vimeo-Fast (fast motion) 34.93 35.66 35.39 36.56 36.81

HR w/o bidirectional w/ bidirectional

Figure 8: Ablation study on the bidirectional mechanism
in DConvLSTM. Adding the bidirectional mechanism into
DConvLSTM, the model can leverage both previous and fu-
ture contexts, and therefore reconstructs more visually ap-
pealing frames with finer image details, especially for video
frames at the first time step, which can not access any tem-
poral information from other frames.

(DFI) module, we introduce two baselines: (a) and (b),
where the model (a) only uses convolutions to blend LR
features without deformable sampling functions as in model
(b). In addition, neither (a) or (b) has ConvLSTM or DCon-
vLSTM. From Table 2, we find that (b) outperforms (a) by
0.16dB on Vid4 with slow motions and 0.73dB on Vimeo-
Fast with fast motions in terms of PSNR. Figure 6 shows a
visual comparison. We can see that (a) produces a face with
severe motion blur, while the proposed deformable feature
interpolation with exploiting local temporal contexts can ef-
fectively address the large motion issue and help the model
(b) generate a frame with more clear face structures and de-
tails. The superiority of the proposed DFI module demon-
strates that the learned offsets in the deformable sampling

functions can effectively exploit local temporal contexts and
successfully capture forward and backward motions even
without any explicit supervision.

Effectiveness of Deformable ConvLSTM To validate the
effect of the proposed Deformable ConvLSTM (DConvL-
STM), we compare four different models: (b), (c), (d), and
(e), where (c) adds a vanilla ConvLSTM structure into (b),
(d) utilizes the proposed DConvLSTM, and (e) adopts a
DConvLSTM in a bidirectional manner.

From Table 2, we can see that (c) outperforms (b) on Vid4
with slow motion videos while it is worse than (b) on
Vimeo-Fast with fast motion sequences. The results val-
idate that vanilla ConvLSTM can leverage useful global
temporal contexts for slow motion videos, but cannot han-
dle large motions in videos. Moreover, we observe that (d)
is significantly better than both (b) and (c), which demon-
strates that our DConvLSTM can successfully learn the
temporal alignment between previous states and the current
feature map. Therefore, it can better exploit global contexts
for reconstructing visually pleasing frames with more de-
tails. Visual results in Figure 7 further support our findings.

In addition, we compare (e) and (d) in Table 2 and Fig-
ure 8 to verify the bidirectional mechanism in DConvL-
STM. From Table 2, we can see that (e) can further improve
STVSR performance over (d) on both slow motion and fast
motion testing sets. The visual results in Figure 8 further
shows that our full model with a bidirectional mechanism
can restore more visual details by making full use of global
temporal information for all input video frames.

5. Conclusion
In this paper, we propose a one-stage framework for

space-time video super-resolution to directly reconstruct
high-resolution and high frame rate videos without synthe-
sizing intermediate low-resolution frames. To achieve this,
we introduce a deformable feature interpolation network
for feature-level temporal interpolation. Furthermore, we
propose a deformable ConvLSTM for aggregating temporal
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information and handling motions. With such a one-stage
design, our network can well explore intra-relatedness be-
tween temporal interpolation and spatial super-resolution in
the task. It enforces our model to adaptively learn to lever-
age useful local and global temporal contexts for alleviat-
ing large motion issues. Extensive experiments show that
our one-stage framework is more effective yet efficient than
existing two-stage networks, and the proposed feature tem-
poral interpolation network and deformable ConvLSTM are
capable of handling very challenging fast motion videos.
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Appendices
Network Architecture

We further illustrate the feature temporal interpolation network in Figure 9 and the proposed STVSR framework in Fig-
ure 10 to help readers better understand the overall structure of our proposed network.

To make our paper be concise and easy to follow, we use a simple version of deformable sampling to introduce the
proposed feature temporal interpolation and deformable ConvLSTM. However, in our implementation, as stated in Section
3.4 of the paper, we adopt a Pyramid, Cascading and Deformable (PCD) structure5 as in [37] to implement the deformable
sampling, which can exploit multi-scale contexts with a feature pyramid.

𝐹"#$%& 𝐹"#'%&

deformable
sampling

deformable
sampling

Feature Size:
64 ∗ 𝑊 ∗ 𝐻

1x1 conv, 64, 64 1x1 conv, 64, 64

+

𝐹"#&
Feature Size:
64 ∗ 𝑊 ∗ 𝐻

Figure 9: Feature temporal interpolation for intermediate LR frames. It will predict an intermediate LR frame feature map
FL
2t from two neighboring feature maps: FL

2t−1 and FL
2t+1, where t = 1, 2, ..., n. Note that the deformable sampling module

on the left samples features from FL
2t−1 with generated sampling parameters from both FL

2t−1 and FL
2t+1; on the contrary, the

deformable sampling module on the right samples features from FL
2t+1.

5The official PyTorch implementation of the PCD can be found in https://github.com/xinntao/EDVR.
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Figure 10: Flowchart of the proposed one-stage STVSR framework. The feature extraction and HR frame reconstruction
networks are temporally shared for all frames, in which different frames are processed independently.
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