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Abstract. As a successful deep model applied in image super-resolution (SR),
the Super-Resolution Convolutional Neural Network (SRCNN) [1,2] has demon-
strated superior performance to the previous hand-crafted models either in speed
and restoration quality. However, the high computational cost still hinders it from
practical usage that demands real-time performance (24 fps). In this paper, we aim
at accelerating the current SRCNN, and propose a compact hourglass-shape CNN
structure for faster and better SR. We re-design the SRCNN structure mainly in
three aspects. First, we introduce a deconvolution layer at the end of the net-
work, then the mapping is learned directly from the original low-resolution im-
age (without interpolation) to the high-resolution one. Second, we reformulate
the mapping layer by shrinking the input feature dimension before mapping and
expanding back afterwards. Third, we adopt smaller filter sizes but more map-
ping layers. The proposed model achieves a speed up of more than 40 times with
even superior restoration quality. Further, we present the parameter settings that
can achieve real-time performance on a generic CPU while still maintaining good
performance. A corresponding transfer strategy is also proposed for fast training
and testing across different upscaling factors.

1 Introduction

Single image super-resolution (SR) aims at recovering a high-resolution (HR) image
from a given low-resolution (LR) one. Recent SR algorithms are mostly learning-based
(or patch-based) methods [1,2,3,4,5,6,7,8] that learn a mapping between the LR and
HR image spaces. Among them, the Super-Resolution Convolutional Neural Network
(SRCNN) [1,2] has drawn considerable attention due to its simple network structure
and excellent restoration quality. Though SRCNN is already faster than most previous
learning-based methods, the processing speed on large images is still unsatisfactory. For
example, to upsample an 240×240 image by a factor of 3, the speed of the original SR-
CNN [1] is about 1.32 fps, which is far from real-time (24 fps). To approach real-time,
we should accelerate SRCNN for at least 17 times while keeping the previous perfor-
mance. This sounds implausible at the first glance, as accelerating by simply reducing
the parameters will severely impact the performance. However, when we delve into the
network structure, we find two inherent limitations that restrict its running speed.

First, as a pre-processing step, the original LR image needs to be upsampled to the
desired size using bicubic interpolation to form the input. Thus the computation com-
plexity of SRCNN grows quadratically with the spatial size of the HR image (not the
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Fig. 1. The proposed FSRCNN networks achieve better super-resolution quality than existing
methods, and are tens of times faster. Especially, the FSRCNN-s can run in real-time (> 24 fps)
on a generic CPU. The chart is based on the Set14 [9] results summarized in Tables 3 and 4.

original LR image). For the upscaling factor n, the computational cost of convolution
with the interpolated LR image will be n2 times of that for the original LR one. This is
also the restriction for most learning-based SR methods [10,3,4,5,7,8]. If the network
was learned directly from the original LR image, the acceleration would be significant,
i.e., about n2 times faster.

The second restriction lies on the costly non-linear mapping step. In SRCNN, input
image patches are projected on a high-dimensional LR feature space, then followed by
a complex mapping to another high-dimensional HR feature space. Dong et al. [2] show
that the mapping accuracy can be substantially improved by adopting a wider mapping
layer, but at the cost of the running time. For example, the large SRCNN (SRCNN-
Ex) [2] has 57,184 parameters, which are six times larger than that for SRCNN (8,032
parameters). Then the question is how to shrink the network scale while still keeping
the previous accuracy.

According to the above observations, we investigate a more concise and efficient
network structure for fast and accurate image SR. To solve the first problem, we adopt
a deconvolution layer to replace the bicubic interpolation. To further ease the compu-
tational burden, we place the deconvolution layer1 at the end of the network, then the
computational complexity is only proportional to the spatial size of the original LR im-
age. It is worth noting that the deconvolution layer is not equal to a simple substitute
of the conventional interpolation kernel like in FCN [13], or ‘unpooling+convolution’
like [14]. Instead, it consists of diverse automatically learned upsampling kernels (see
Figure 3) that work jointly to generate the final HR output, and replacing these decon-
volution filters with uniform interpolation kernels will result in a drastic PSNR drop
(e.g., at least 0.9 dB on the Set5 dataset [15] for ×3).

For the second problem, we add a shrinking and an expanding layer at the beginning
and the end of the mapping layer separately to restrict mapping in a low-dimensional
feature space. Furthermore, we decompose a single wide mapping layer into several
layers with a fixed filter size 3× 3. The overall shape of the new structure looks like an

1 We follow [11] to adopt the terminology ‘deconvolution’. We note that it carries very different
meaning in classic image processing, see [12].
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hourglass, which is symmetrical on the whole, thick at the ends and thin in the middle.
Experiments show that the proposed model, named as Fast Super-Resolution Convolu-
tional Neural Networks (FSRCNN) 2, achieves a speed-up of more than 40× with even
superior performance than the SRCNN-Ex. In this work, we also present a small FS-
RCNN network (FSRCNN-s) that achieves similar restoration quality as SRCNN, but
is 17.36 times faster and can run in real time (24 fps) with a generic CPU. As shown
in Figure 1, the FSRCNN networks are much faster than contemporary SR models yet
achieving superior performance.

Apart from the notable improvement in speed, the FSRCNN also has another ap-
pealing property that could facilitate fast training and testing across different upscal-
ing factors. Specifically, in FSRCNN, all convolution layers (except the deconvolution
layer) can be shared by networks of different upscaling factors. During training, with
a well-trained network, we only need to fine-tune the deconvolution layer for another
upscaling factor with almost no loss of mapping accuracy. During testing, we only need
to do convolution operations once, and upsample an image to different scales using the
corresponding deconvolution layer.

Our contributions are three-fold: 1) We formulate a compact hourglass-shape CNN
structure for fast image super-resolution. With the collaboration of a set of deconvolu-
tion filters, the network can learn an end-to-end mapping between the original LR and
HR images with no pre-processing. 2) The proposed model achieves a speed up of at
least 40× than the SRCNN-Ex [2] while still keeping its exceptional performance. One
of its small-size version can run in real-time (>24 fps) on a generic CPU with better
restoration quality than SRCNN [1]. 3) We transfer the convolution layers of the pro-
posed networks for fast training and testing across different upscaling factors, with no
loss of restoration quality.

2 Related Work

Deep learning for SR: Recently, the deep learning techniques have been success-
fully applied on SR. The pioneer work is termed as the Super-Resolution Convolu-
tional Neural Network (SRCNN) proposed by Dong et al. [1,2]. Motivated by SRCNN,
some problems such as face hallucination [16] and depth map super-resolution [17]
have achieved state-of-the-art results. Deeper structures have also been explored in [18]
and [19]. Different from the conventional learning-based methods, SRCNN directly
learns an end-to-end mapping between LR and HR images, leading to a fast and ac-
curate inference. The inherent relationship between SRCNN and the sparse-coding-
based methods ensures its good performance. Based on the same assumption, Wang et
al. [8] further replace the mapping layer by a set of sparse coding sub-networks and
propose a sparse coding based network (SCN). With the domain expertise of the con-
ventional sparse-coding-based method, it outperforms SRCNN with a smaller model
size. However, as it strictly mimics the sparse-coding solver, it is very hard to shrink
the sparse coding sub-network with no loss of mapping accuracy. Furthermore, all these

2 The implementation is available on the project page http://mmlab.ie.cuhk.edu.hk/
projects/FSRCNN.html.

http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
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networks [8,18,19] need to process the bicubic-upscaled LR images. The proposed FS-
RCNN does not only perform on the original LR image, but also contains a simpler but
more efficient mapping layer. Furthermore, the previous methods have to train a totally
different network for a specific upscaling factor, while the FSRCNN only requires a
different deconvolution layer. This also provides us a faster way to upscale an image to
several different sizes.
CNNs acceleration: A number of studies have investigated the acceleration of CNN.
Denton et al. [20] first investigate the redundancy within the CNNs designed for ob-
ject detection. Then Zhang et al. [21] make attempts to accelerate very deep CNNs
for image classfication. They also take the non-linear units into account and reduce
the accumulated error by asymmetric reconstruction. Our model also aims at acceler-
ating CNNs but in a different manner. First, they focus on approximating the existing
well-trained models, while we reformulate the previous model and achieves better per-
formance. Second, the above methods are all designed for high-level vision problems
(e.g., image classification and object detection), while ours are for the low-level vision
task. As the deep models for SR contain no fully-connected layers, the approximation
of convolution filters will severely impact the performance.

3 Fast Super-Resolution by CNN

We first briefly describe the network structure of SRCNN [1,2], and then we detail
how we reformulate the network layer by layer. The differences between FSRCNN and
SRCNN are presented at the end of this section.

3.1 SRCNN

SRCNN aims at learning an end-to-end mapping function F between the bicubic-
interpolated LR image Y and the HR image X . The network contains all convolution
layers, thus the size of the output is the same as that of the input image. As depicted in
Figure 2, the overall structure consists of three parts that are analogous to the main steps
of the sparse-coding-based methods [10]. The patch extraction and representation part
refers to the first layer, which extracts patches from the input and represents each patch
as a high-dimensional feature vector. The non-linear mapping part refers to the middle
layer, which maps the feature vectors non-linearly to another set of feature vectors, or
namely HR features. Then the last reconstruction part aggregates these features to form
the final output image.

The computation complexity of the network can be calculated as follows,

O{(f21n1 + n1f
2
2n2 + n2f

2
3 )SHR}, (1)

where {fi}3i=1 and {ni}3i=1 are the filter size and filter number of the three layers, re-
spectively. SHR is the size of the HR image. We observe that the complexity is propor-
tional to the size of the HR image, and the middle layer contributes most to the network
parameters. In the next section, we present the FSRCNN by giving special attention to
these two facets.
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Fig. 2. This figure shows the network structures of the SRCNN and FSRCNN. The proposed
FSRCNN is different from SRCNN mainly in three aspects. First, FSRCNN adopts the original
low-resolution image as input without bicubic interpolation. A deconvolution layer is introduced
at the end of the network to perform upsampling. Second, The non-linear mapping step in SRCNN
is replaced by three steps in FSRCNN, namely the shrinking, mapping, and expanding step. Third,
FSRCNN adopts smaller filter sizes and a deeper network structure. These improvements provide
FSRCNN with better performance but lower computational cost than SRCNN.

3.2 FSRCNN

As shown in Figure 2, FSRCNN can be decomposed into five parts – feature extraction,
shrinking, mapping, expanding and deconvolution. The first four parts are convolution
layers, while the last one is a deconvolution layer. For better understanding, we denote a
convolution layer asConv(fi, ni, ci), and a deconvolution layer asDeConv(fi, ni, ci),
where the variables fi, ni, ci represent the filter size, the number of filters and the num-
ber of channels, respectively.

As the whole network contains tens of variables (i.e., {fi, ni, ci}6i=1), it is impossi-
ble for us to investigate each of them. Thus we assign a reasonable value to the insen-
sitive variables in advance, and leave the sensitive variables unset. We call a variable
sensitive when a slight change of the variable could significantly influence the perfor-
mance. These sensitive variables always represent some important influential factors in
SR, which will be shown in the following descriptions.
Feature extraction: This part is similar to the first part of SRCNN, but different on the
input image. FSRCNN performs feature extraction on the original LR image without
interpolation. To distinguish from SRCNN, we denote the small LR input as Ys. By do-
ing convolution with the first set of filters, each patch of the input (1-pixel overlapping)
is represented as a high-dimensional feature vector.

We refer to SRCNN on the choice of parameters – f1, n1, c1. In SRCNN, the filter
size of the first layer is set to be 9. Note that these filters are performed on the upscaled
image Y . As most pixels in Y are interpolated from Ys, a 5× 5 patch in Ys could cover
almost all information of a 9 × 9 patch in Y . Therefore, we can adopt a smaller filter
size f1 = 5 with little information loss. For the number of channels, we follow SRCNN
to set c1 = 1. Then we only need to determine the filter number n1. From another
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perspective, n1 can be regarded as the number of LR feature dimension, denoted as d –
the first sensitive variable. Finally, the first layer can be represented as Conv(5, d, 1).
Shrinking: In SRCNN, the mapping step generally follows the feature extraction step,
then the high-dimensional LR features are mapped directly to the HR feature space.
However, as the LR feature dimension d is usually very large, the computation com-
plexity of the mapping step is pretty high. This phenomenon is also observed in some
deep models for high-level vision tasks. Authors in [22] apply 1 × 1 layers to save the
computational cost.

With the same consideration, we add a shrinking layer after the feature extraction
layer to reduce the LR feature dimension d. We fix the filter size to be f2 = 1, then the
filters perform like a linear combination within the LR features. By adopting a smaller
filter number n2 = s << d, the LR feature dimension is reduced from d to s. Here s
is the second sensitive variable that determines the level of shrinking, and the second
layer can be represented as Conv(1, s, d). This strategy greatly reduces the number of
parameters (detailed computation in Section 3.3).
Non-linear mapping: The non-linear mapping step is the most important part that af-
fects the SR performance, and the most influencing factors are the width (i.e., the num-
ber of filters in a layer) and depth (i.e., the number of layers) of the mapping layer.
As indicated in SRCNN [2], a 5 × 5 layer achieves much better results than a 1 × 1
layer. But they are lack of experiments on very deep networks. The above experiences
help us to formulate a more efficient mapping layer for FSRCNN. First, as a trade-off
between the performance and network scale, we adopt a medium filter size f3 = 3.
Then, to maintain the same good performance as SRCNN, we use multiple 3× 3 layers
to replace a single wide one. The number of mapping layers is another sensitive vari-
able (denoted as m), which determines both the mapping accuracy and complexity. To
be consistent, all mapping layers contain the same number of filters n3 = s. Then the
non-linear mapping part can be represented as m× Conv(3, s, s).
Expanding: The expanding layer acts like an inverse process of the shrinking layer.
The shrinking operation reduces the number of LR feature dimension for the sake of
the computational efficiency. However, if we generate the HR image directly from these
low-dimensional features, the final restoration quality will be poor. Therefore, we add
an expanding layer after the mapping part to expand the HR feature dimension. To
maintain consistency with the shrinking layer, we also adopt 1 × 1 filters, the number
of which is the same as that for the LR feature extraction layer. As opposed to the
shrinking layer Conv(1, s, d), the expanding layer is Conv(1, d, s). Experiments show
that without the expanding layer, the performance decreases up to 0.3 dB on the Set5
test set [15].
Deconvolution: The last part is a deconvolution layer, which upsamples and aggre-
gates the previous features with a set of deconvolution filters. The deconvolution can
be regarded as an inverse operation of the convolution. For convolution, the filter is
convolved with the image with a stride k, and the output is 1/k times of the input.
Contrarily, if we exchange the position of the input and output, the output will be k
times of the input, as depicted in Figure 4. We take advantage of this property to set
the stride k = n, which is the desired upscaling factor. Then the output is directly the
reconstructed HR image.
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Fig. 3. The learned deconvolution layer (56 channels) for the upscaling factor 3.

When we determine the filter size of the deconvolution filters, we can look at the net-
work from another perspective. Interestingly, the reversed network is like a downscal-
ing operator that accepts an HR image and outputs the LR one. Then the deconvolution
layer becomes a convolution layer with a stride n. As it extracts features from the HR
image, we should adopt 9 × 9 filters that are consistent with the first layer of SRCNN.
Similarly, if we reverse back, the deconvolution filters should also have a spatial size
f5 = 9. Experiments also demonstrate this assumption. Figure 3 shows the learned de-
convolution filters, the patterns of which are very similar to that of the first-layer filters
in SRCNN. Lastly, we can represent the deconvolution layer as DeConv(9, 1, d).

Different from inserting traditional interpolation kernels (e.g., bicubic or bilinear)
in-network [13] or having ‘unpooling+convolution’ [14], the deconvolution layer learns
a set of upsampling kernel for the input feature maps. As shown in Figure 3, these ker-
nels are diverse and meaningful. If we force these kernels to be identical, the parameters
will be used inefficiently (equal to sum up the input feature maps as one), and the per-
formance will drop at least 0.9 dB on the Set5.
PReLU: For the activation function after each convolution layer, we suggest the use
of the Parametric Rectified Linear Unit (PReLU) [23] instead of the commonly-used
Rectified Linear Unit (ReLU). They are different on the coefficient of the negative
part. For ReLU and PReLU, we can define a general activation function as f(xi) =
max(xi, 0) + aimin(0, xi), where xi is the input signal of the activation f on the i-th
channel, and ai is the coefficient of the negative part. The parameter ai is fixed to be
zero for ReLU, but is learnable for PReLU. We choose PReLU mainly to avoid the
“dead features” [11] caused by zero gradients in ReLU. Then we can make full use of
all parameters to test the maximum capacity of different network designs. Experiments
show that the performance of the PReLU-activated networks is more stable, and can be
seen as the up-bound of that for the ReLU-activated networks.
Overall structure: We can connect the above five parts to form a complete FSRCNN
network as Conv(5, d, 1)−PReLU−Conv(1, s, d)−PReLU−m×Conv(3, s, s)−
PReLU −Conv(1, d, s)−PReLU −DeConv(9, 1, d). On the whole, there are three
sensitive variables (i.e., the LR feature dimension d, the number of shrinking filters s,
and the mapping depth m) governing the performance and speed. For simplicity, we
represent a FSRCNN network as FSRCNN(d, s,m). The computational complexity
can be calculated as

O{(25d+ sd+ 9ms2 + ds+ 81d)SLR} = O{(9ms2 + 2sd+ 106d)SLR}. (2)
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Table 1. The transitions from SRCNN to FSRCNN.

SRCNN-Ex Transition State 1 Transition State 2 FSRCNN (56,12,4)
First part Conv(9,64,1) Conv(9,64,1) Conv(9,64,1) Conv(5,56,1)

Conv(1,12,64)- Conv(1,12,56)-
Mid part Conv(5,32,64) Conv(5,32,64) 4Conv(3,12,12) 4Conv(3,12,12)

-Conv(1,64,12) -Conv(1,56,12)
Last part Conv(5,1,32) DeConv(9,1,32) DeConv(9,1,64) DeConv(9,1,56)
Input size SHR SLR SLR SLR

Parameters 57184 58976 17088 12464
Speedup 1× 8.7× 30.1× 41.3×

PSNR (Set5) 32.83 dB 32.95 dB 33.01 dB 33.06 dB

We exclude the parameters of PReLU , which introduce negligible computational cost.
Interestingly, the new structure looks like an hourglass, which is symmetrical on the
whole, thick at the ends, and thin in the middle. The three sensitive variables are just
the controlling parameters for the appearance of the hourglass. Experiments show that
this hourglass design is very effective for image super-resolution.
Cost function: Following SRCNN, we adopt the mean square error (MSE) as the cost
function. The optimization objective is represented as

min
θ

1

n

∑n

i=1
||F (Y is ; θ)−Xi||22, (3)

where Y is and Xi are the i-th LR and HR sub-image pair in the training data, and
F (Y is ; θ) is the network output for Y is with parameters θ. All parameters are optimized
using stochastic gradient descent with the standard backpropagation.

3.3 Differences against SRCNN: From SRCNN to FSRCNN

To better understand how we accelerate SRCNN, we transform the SRCNN-Ex to an-
other FSRCNN (56,12,4) within three steps, and show how much acceleration and
PSNR gain are obtained by each step. We use a representative upscaling factor n = 3.
The network configurations of SRCNN, FSRCNN and the two transition states are
shown in Table 1. We also show their performance (average PSNR on Set5) trained
on the 91-image dataset [10].

First, we replace the last convolution layer of SRCNN-Ex with a deconvolution
layer, then the whole network will perform on the original LR image and the compu-
tation complexity is proportional to SLR instead of SHR. This step will enlarge the
network scale but achieve a speedup of 8.7× (i.e., 57184/58976 × 32). As the learned
deconvolution kernels are better than a single bicubic kernel, the performance increases
roughly by 0.12 dB. Second, the single mapping layer is replaced with the combination
of a shrinking layer, 4 mapping layers and an expanding layer. Overall, there are 5 more
layers, but the parameters are decreased from 58,976 to 17,088. Also, the acceleration
after this step is the most prominent – 30.1×. It is widely observed that depth is the
key factor that affects the performance. Here, we use four “narrow” layers to replace
a single “wide” layer, thus achieving better results (33.01 dB) with much less param-
eters. Lastly, we adopt smaller filter sizes and less filters (e.g., from Conv(9, 64, 1)
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Fig. 4. The FSRCNN consists of convolution layers and a deconvolution layer. The convolution
layers can be shared for different upscaling factors. A specific deconvolution layer is trained for
different upscaling factors.

to Conv(5, 56, 1)), and obtain a final speedup of 41.3×. As we remove some redun-
dant parameters, the network is trained more efficiently and achieves another 0.05 dB
improvement.

It is worth noting that this acceleration is NOT at the cost of performance degra-
dation. Contrarily, the FSRCNN (56,12,4) outperforms SRCNN-Ex by a large margin
(e.g., 0.23dB on the Set5 dataset). The main reasons of high performance have been
presented in the above analysis. This is the main difference between our method and
other CNN acceleration works [20,21]. Nevertheless, with the guarantee of good per-
formance, it is easier to cooperate with other acceleration methods to get a faster model.

3.4 SR for Different Upscaling Factors

Another advantage of FSRCNN over the previous learning-based methods is that FSR-
CNN could achieve fast training and testing across different upscaling factors. Specif-
ically, we find that all convolution layers on the whole act like a complex feature ex-
tractor of the LR image, and only the last deconvolution layer contains the information
of the upscaling factor. This is also proved by experiments, of which the convolution
filters are almost the same for different upscaling factors3. With this property, we can
transfer the convolution filters for fast training and testing.

In practice, we train a model for an upscaling factor in advance. Then during train-
ing, we only fine-tune the deconvolution layer for another upscaling factor and leave
the convolution layers unchanged. The fine-tuning is fast, and the performance is as
good as training from scratch (see Section 4.4). During testing, we perform the convo-
lution operations once, and upsample an image to different sizes with the corresponding
deconvolution layer. If we need to apply several upscaling factors simultaneously, this
property can lead to much faster testing (as illustrated in Figure 4).

3 Note that in SRCNN and SCN, the convolution filters differ a lot for different upscaling factors.
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4 Experiments

4.1 Implementation Details

Training dataset. The 91-image dataset is widely used as the training set in learning-
based SR methods [10,5,1]. As deep models generally benefit from big data, studies
have found that 91 images are not enough to push a deep model to the best performance.
Yang et al. [24] and Schulter et al. [7] use the BSD500 dataset [25]. However, images
in the BSD500 are in JPEG format, which are not optimal for the SR task. Therefore,
we contribute a new General-100 dataset that contains 100 bmp-format images (with
no compression)4. The size of the newly introduced 100 images ranges from 710× 704
(large) to 131 × 112 (small). They are all of good quality with clear edges but fewer
smooth regions (e.g., sky and ocean), thus are very suitable for the SR training. In
the following experiments, apart from using the 91-image dataset for training, we will
also evaluate the applicability of the joint set of the General-100 dataset and the 91-
image dataset to train our networks. To make full use of the dataset, we also adopt data
augmentation as in [8]. We augment the data in two ways. 1) Scaling: each image is
downscaled with the factor 0.9, 0,8, 0.7 and 0.6. 2) Rotation: each image is rotated with
the degree of 90, 180 and 270. Then we will have 5 × 4 − 1 = 19 times more images
for training.
Test and validation dataset. Following SRCNN and SCN, we use the Set5 [15], Set14
[9] and BSD200 [25] dataset for testing. Another 20 images from the validation set of
the BSD500 dataset are selected for validation.
Training samples. To prepare the training data, we first downsample the original train-
ing images by the desired scaling factor n to form the LR images. Then we crop the LR
training images into a set of fsub × fsub-pixel sub-images with a stride k. The corre-
sponding HR sub-images (with size (nfsub)

2) are also cropped from the ground truth
images. These LR/HR sub-image pairs are the primary training data.

For the issue of padding, we empirically find that padding the input or output maps
does little effect on the final performance. Thus we adopt zero padding in all layers
according to the filter size. In this way, there is no need to change the sub-image size
for different network designs. Another issue affecting the sub-image size is the decon-
volution layer. As we train our models with the Caffe package [27], its deconvolution
filters will generate the output with size (nfsub − n + 1)2 instead of (nfsub)2. So we
also crop (n− 1)-pixel borders on the HR sub-images. Finally, for ×2, ×3 and ×4, we
set the size of LR/HR sub-images to be 102/192, 72/192 and 62/212, respectively.
Training strategy. For fair comparison with the state-of-the-arts (Sec. 4.5), we adopt
the 91-image dataset for training. In addition, we also explore a two-step training strat-
egy. First, we train a network from scratch with the 91-image dataset. Then, when the
training is saturated, we add the General-100 dataset for fine-tuning. With this strat-
egy, the training converges much earlier than training with the two datasets from the
beginning.

When training with the 91-image dataset, the learning rate of the convolution layers
is set to be 10−3 and that of the deconvolution layer is 10−4. Then during fine-tuning,

4 We follow [26] to introduce only 100 images in a new super-resolution dataset. A larger dataset
with more training images will be released on the project page.
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Table 2. The comparison of PSNR (Set5) and parameters of different settings.

Settings m = 2 m = 3 m = 4

d = 48, s = 12 32.87 (8832) 32.88 (10128) 33.08 (11424)
d = 56, s = 12 33.00 (9872) 32.97 (11168) 33.16 (12464)
d = 48, s = 16 32.95 (11232) 33.10 (13536) 33.18 (15840)
d = 56, s = 16 33.01 (12336) 33.12 (14640) 33.17 (16944)

the learning rate of all layers is reduced by half. For initialization, the weights of the
convolution filters are initialized with the method designed for PReLU in [23]. As we
do not have activation functions at the end, the deconvolution filters are initialized by
the same way as in SRCNN (i.e., drawing randomly from a Gaussian distribution with
zero mean and standard deviation 0.001).

4.2 Investigation of Different Settings

To test the property of the FSRCNN structure, we design a set of controlling experi-
ments with different values of the three sensitive variables – the LR feature dimension
d, the number of shrinking filters s, and the mapping depth m. Specifically, we choose
d = 48, 56, s = 12, 16 and m = 2, 3, 4, thus we conduct a total of 2 × 2 × 3 = 12
experiments with different combinations.

The average PSNR values on the Set5 dataset of these experiments are shown in
Table 2. We analyze the results in two directions, i.e., horizontally and vertically in
the table. First, we fix d, s and examine the influence of m. Obviously, m = 4 leads
to better results than m = 2 and m = 3. This trend can also be observed from the
convergence curves shown in Figure 5(a). Second, we fix m and examine the influence
of d and s. In general, a better result usually requires more parameters (e.g., a larger d
or s), but more parameters do not always guarantee a better result. This trend is also
reflected in Figure 5(b), where we see the three largest networks converge together.
From all the results, we find the best trade-off between performance and parameters –
FSRCNN (56,12,4), which achieves one of the highest results with a moderate number
of parameters.

It is worth noticing that the smallest network FSRCNN (48,12,2) achieves an av-
erage PSNR of 32.87 dB, which is already higher than that of SRCNN-Ex (32.75 dB)
reported in [2]. The FSRCNN (48,12,2) contains only 8,832 parameters, then the accel-
eration compared with SRCNN-Ex is 57184/8832× 9 = 58.3 times.

4.3 Towards Real-Time SR with FSRCNN

Now we want to find a more concise FSRCNN network that could realize real-time SR
while still keep good performance. First, we calculate how many parameters can meet
the minimum requirement of real-time implementation (24 fps). As mentioned in the
introduction, the speed of SRCNN to upsample an image to the size 760× 760 is 1.32
fps. The upscaling factor is 3, and SRCNN has 8032 parameters. Then according to
Equation 1 and 2, the desired FSRCNN network should have at most 8032×1.32/24×
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Fig. 5. Convergence curves of different network designs.
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Fig. 6. Convergence curves for different training strategies.

32 ≈ 3976 parameters. To achieve this goal, we find an appropriate configuration –
FSRCNN (32,5,1) that contains 3937 parameters. With our C++ test code, the speed of
FSRCNN (32,5,1) reaches 24.7 fps, satisfying the real-time requirement. Furthermore,
the FSRCNN (32,5,1) even outperforms SRCNN (9-1-5) [1] (see Table 3 and 4).

4.4 Experiments for Different Upscaling Factors

Unlike existing methods [1,2] that need to train a network from scratch for a differ-
ent scaling factor, the proposed FSRCNN enjoys the flexibility of learning and test-
ing across upscaling factors through transferring the convolution filters (Sec. 3.4). We
demonstrate this flexibility in this section. We choose the FSRCNN (56,12,4) as the
default network. As we have obtained a well-trained model under the upscaling factor 3
(in Section 4.2), we then train the network for×2 on the basis of that for×3. To be spe-
cific, the parameters of all convolution filters in the well-trained model are transferred
to the network of ×2. During training, we only fine-tune the deconvolution layer on the
91-image and General-100 datasets of ×2. For comparison, we train another network
also for ×2 but from scratch. The convergence curves of these two networks are shown
in Figure 6. Obviously, with the transferred parameters, the network converges very fast
(only a few hours) with the same good performance as that training form scratch. In the
following experiments, we only train the networks from scratch for ×3, and fine-tune
the corresponding deconvolution layers for ×2 and ×4.

4.5 Comparison with State-of-the-Arts

Compare using the same training set. First, we compare our method with four state-
of-the-art learning-based SR algorithms that rely on external databases, namely the
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super-resolution forest (SRF) [7], SRCNN [1], SRCNN-Ex [2] and the sparse coding
based network (SCN) [8]. The implementations of these methods are all based on their
released source code. As they are written in different programming languages, the com-
parison of their test time may not be fair, but still reflects the main trend. To have a fair
comparison on restoration quality, all models are trained on the augmented 91-image
dataset, so the results are slightly different from that in the corresponding paper. We se-
lect two representative FSRCNN networks – FSRCNN (short for FSRCNN (56,12,4)),
and FSRCNN-s (short for FSRCNN (32,5,1)). The inference time is tested with the
C++ implementation on an Intel i7 CPU 4.0 GHz. The quantitative results (PSNR and
test time) for different upscaling factors are listed in Table 3. We first look at the test
time, which is the main focus of our work. The proposed FSRCNN is undoubtedly the
fastest method that is at least 40 times faster than SRCNN-Ex, SRF and SCN (with
the upscaling factor 3), while the fastest FSRCNN-s can achieve real-time performance
(> 24 fps) on almost all the test images. Moreover, the FSRCNN still outperforms the
previous methods on the PSNR values especially for×2 and×3. We also notice that the
FSRCNN achieves slightly lower PSNR than SCN on factor 4. This is mainly because
that the SCN adopts two models of×2 to upsample an image by×4. We have also tried
this strategy and achieved comparable results. However, as we pay more attention to
speed, we still present the results of a single network.
Compare using different training sets (following the literature). To follow the lit-
erature, we also compare the best PSNR results that are reported in the corresponding
paper, as shown in Table 4. We also add another two competitive methods – KK [28]
and A+ [5] for comparison. Note that these results are obtained using different datasets,
and our models are trained on the 91-image and General-100 datasets. From Table 4, we
can see that the proposed FSRCNN still outperforms other methods on most upscaling
factors and datasets. We have also done comprehensive comparisons in terms of SSIM
and IFC [29] in Table 5 and 6, where we observe the same trend. The reconstructed
images of FSRCNN (shown in Figure 7 and 8), more examples can be found on the
project page) are sharper and clearer than other results. In another aspect, the restoration
quality of small models (FSRCNN-s and SRCNN) is slightly worse than large models
(SRCNN-Ex, SCN and FSRCNN). In Figure 7, we could observe some ”jaggies” or
ringing effects in the results of FSRCNN-s and SRCNN.

5 Conclusion

While observing the limitations of current deep learning based SR models, we explore
a more efficient network structure to achieve high running speed without the loss of
restoration quality. We approach this goal by re-designing the SRCNN structure, and
achieves a final acceleration of more than 40 times. Extensive experiments suggest that
the proposed method yields satisfactory SR performance, while superior in terms of
run time. The proposed model can be adapted for real-time video SR, and motivate fast
deep models for other low-level vision tasks.
Acknowledgment. This work is partially supported by SenseTime Group Limited.
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Table 3. The results of PSNR (dB) and test time (sec) on three test datasets. All models are trained
on the 91-image dataset.

test upscaling Bicubic SRF [7] SRCNN [1] SRCNN-Ex [2] SCN [8] FSRCNN-s FSRCNN
dataset factor PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time
Set5 2 33.66 - 36.84 2.1 36.33 0.18 36.67 1.3 36.76 0.94 36.53 0.024 36.94 0.068

Set14 2 30.23 - 32.46 3.9 32.15 0.39 32.35 2.8 32.48 1.7 32.22 0.061 32.54 0.16
BSD200 2 29.70 - 31.57 3.1 31.34 0.23 31.53 1.7 31.63 1.1 31.44 0.033 31.73 0.098

Set5 3 30.39 - 32.73 1.7 32.45 0.18 32.83 1.3 33.04 1.8 32.55 0.010 33.06 0.027
Set14 3 27.54 - 29.21 2.5 29.01 0.39 29.26 2.8 29.37 3.6 29.08 0.023 29.37 0.061

BSD200 3 27.26 - 28.40 2.0 28.27 0.23 28.47 1.7 28.54 2.4 28.32 0.013 28.55 0.035
Set5 4 28.42 - 30.35 1.5 30.15 0.18 30.45 1.3 30.82 1.2 30.04 0.0052 30.55 0.015

Set14 4 26.00 - 27.41 2.1 27.21 0.39 27.44 2.8 27.62 2.3 27.12 0.0099 27.50 0.029
BSD200 4 25.97 - 26.85 1.7 26.72 0.23 26.88 1.7 27.02 1.4 26.73 0.0072 26.92 0.019

Table 4. The results of PSNR (dB) on three test datasets. We present the best results reported
in the corresponding paper. The proposed FSCNN and FSRCNN-s are trained on both 91-image
and General-100 dataset. More comparisons with other methods on PSNR, SSIM and IFC [29]
can be found in the supplementary file.

test upscaling Bicubic KK [28] A+ [5] SRF [7] SRCNN [1] SRCNN-Ex [2] SCN [8] FSRCNN-s FSRCNN
dataset factor PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR
Set5 2 33.66 36.20 36.55 36.89 36.34 36.66 36.93 36.58 37.00
Set14 2 30.23 32.11 32.28 32.52 32.18 32.45 32.56 32.28 32.63

BSD200 2 29.70 31.30 31.44 31.66 31.38 31.63 31.63 31.48 31.80
Set5 3 30.39 32.28 32.59 32.72 32.39 32.75 33.10 32.61 33.16
Set14 3 27.54 28.94 29.13 29.23 29.00 29.30 29.41 29.13 29.43

BSD200 3 27.26 28.19 28.36 28.45 28.28 28.48 28.54 28.32 28.60
Set5 4 28.42 30.03 30.28 30.35 30.09 30.49 30.86 30.11 30.71
Set14 4 26.00 27.14 27.32 27.41 27.20 27.50 27.64 27.19 27.59

BSD200 4 25.97 26.68 26.83 26.89 26.73 26.92 27.02 26.75 26.98

Bicubicx/x31.68xdBOriginalx/xPSNR

SCNx/x33.61xdB FSRCNNx/x33.85xdB

SRFx/x33.53xdB SRCNNx/x33.39xdB

FSRCNN-sx/x33.43xdBSRCNN-Exx/x33.67xdB

Fig. 7. The “lenna” image from the Set14 dataset with an upscaling factor 3.
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Table 5. The results of PSNR (dB), SSIM and IFC [29] on the Set5 [30], Set14 [9] and
BSD200 [25] datasets.

test upscaling Bicubic KK [28] ANR [4] A+ [4] SRF [7]
dataset factor PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC
Set5 2 33.66/0.9299/6.10 36.20/0.9511/6.87 35.83/0.9499/8.09 36.55/0.9544/8.48 36.87/0.9556/8.63

Set14 2 30.23/0.8687/6.09 32.11/0.9026/6.83 31.80/0.9004/7.81 32.28/0.9056/8.11 32.51/0.9074/8.22
BSD200 2 29.70/0.8625/5.70 31.30/0.9000/6.26 31.02/0.8968/7.27 31.44/0.9031/7.49 31.65/0.9053/7.60

Set5 3 30.39/0.9299/6.10 32.28/0.9033/4.14 31.92/0.8968/4.52 32.59/0.9088/4.84 32.71/0.9098/4.90
Set14 3 27.54/0.7736/3.41 28.94/0.8132/3.83 28.65/0.8093/4.23 29.13/0.8188/4.45 29.23/0.8206/4.49

BSD200 3 27.26/0.7638/3.19 28.19/0.8016/3.49 28.02/0.7981/3.91 28.36/0.8078/4.07 28.45/0.8095/4.11
Set5 4 28.42/0.8104/2.35 30.03/0.8541/2.81 29.69/0.8419/3.02 30.28/0.8603/3.26 30.35/0.8600/3.26

Set14 4 26.00/0.7019/2.23 27.14/0.7419/2.57 26.85/0.7353/2.78 27.32/0.7471/2.74 27.41/0.7497/2.94
BSD200 4 25.97/0.6949/2.04 26.68/0.7282/2.22 26.56/0.7253/2.51 26.83/0.7359/2.62 26.89/0.7368/2.62

Table 6. The results of PSNR (dB), SSIM and IFC [29] on the Set5 [30], Set14 [9] and
BSD200 [25] datasets.

test upscaling SRCNN [1] SRCNN-Ex [2] SCN [8] FSRCNN-s FSRCNN
dataset factor PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC PSNR/SSIM/IFC
Set5 2 36.34/0.9521/7.54 36.66/0.9542/8.05 36.76/0.9545/7.32 36.58/0.9532/7.75 37.00/0.9558/8.06

Set14 2 32.18/0.9039/7.22 32.45/0.9067/7.76 32.48/0.9067/7.00 32.28/0.9052/7.47 32.63/0.9088/7.71
BSD200 2 31.38/0.9287/6.80 31.63/0.9044/7.26 31.63/0.9048/6.45 31.48/0.9027/7.01 31.80/0.9074/7.25

Set5 3 32.39/0.9033/4.25 32.75/0.9090/4.58 33.04/0.9136/4.37 32.54/0.9055/4.56 33.16/0.9140/4.88
Set14 3 29.00/0.8145/3.96 29.30/0.8215/4.26 29.37/0.8226/3.99 29.08/0.8167/4.24 29.43/0.8242/4.47

BSD200 3 28.28/0.8038/3.67 28.48/0.8102/3.92 28.54/0.8119/3.59 28.32/0.8058/3.96 28.60/0.8137/4.11
Set5 4 30.09/0.8530/2.86 30.49/0.8628/3.01 30.82/0.8728/3.07 30.11/0.8499/2.76 30.71/0.8657/3.01

Set14 4 27.20/0.7413/2.60 27.50/0.7513/2.74 27.62/0.7571/2.71 27.19/0.7423/2.55 27.59/0.7535/2.70
BSD200 4 26.73/0.7291/2.37 26.92/0.7376/2.46 27.02/0.7434/2.38 26.75/0.7312/2.32 26.98/0.7398/2.41

Bicubic3/324.043dBOriginal3/3PSNR

SCN3/328.573dB FSRCNN3/328.683dB

SRF3/327.963dB SRCNN3/327.583dB

FSRCNN-s3/327.733dBSRCNN-Ex3/327.953dB

Fig. 8. The “butterfly” image from the Set5 dataset with an upscaling factor 3.
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