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Abstract
Deep convolution neural networks demonstrate im-
pressive results in the super-resolution domain. A
series of studies concentrate on improving peak
signal noise ratio (PSNR) by using much deeper
layers, which are not friendly to constrained re-
sources. Pursuing a trade-off between the restora-
tion capacity and the simplicity of models is still
non-trivial. Recent contributions are struggling to
manually maximize this balance, while our work
achieves the same goal automatically with neural
architecture search. Specifically, we handle super-
resolution with a multi-objective approach. We also
propose an elastic search tactic at both micro and
macro level, based on a hybrid controller that prof-
its from evolutionary computation and reinforce-
ment learning. Quantitative experiments help us to
draw a conclusion that our generated models dom-
inate most of the state-of-the-art methods with re-
spect to the individual FLOPS.

1 Introduction and Related Works
As a classical task in computer vision, single image super-
resolution (SISR) is aimed to restore a high-resolution image
from a degraded low-resolution one, which is known as an ill-
posed inverse procedure. Most of the recent works on SISR
have shifted their approaches to deep learning, and they have
surpassed other SISR algorithms with big margins [Dong et
al., 2014; Kim et al., 2016a; He et al., 2016; Ahn et al., 2018].

Nonetheless, these human-designed models are tenuous
to fine-tune or to compress. Meantime, neural architecture
search has produced dominating models in classification tasks
[Zoph and Le, 2016; Zoph et al., 2017]. Following this trend,
a novel work by [Chu et al., 2019] has shed light on the SISR
task with a reinforced evolutionary search method, which has
achieved results outperforming some notable networks in-
cluding VDSR [Kim et al., 2016a].

In this paper, we dive deeper into the SISR task with elas-
tic neural architecture search, hitting a record comparable to
CARN and CARN-M [Ahn et al., 2018] 1. Our main contri-
butions can be summarized in the following four aspects,

1Our models are released at https://github.com/falsr/FALSR.

• releasing several fast, accurate and lightweight super-
resolution architectures and models, which are highly
competitive with recent state-of-the-art methods,
• performing elastic search by combining micro and

macro space on the cell-level to boost capacity,
• building super-resolution as a constrained multi-

objective optimization problem and applying a hybrid
model generation method to balance exploration and ex-
ploitation,
• producing high-quality models that can meet various re-

quirements under given constraints within a single run.

2 Pipeline Architecture
Like most of NAS approaches, our pipeline contains three
principle ingredients: an elastic search space, a hybrid model
generator and a model evaluator based on incomplete train-
ing. It is explained in detail in the following sections.

Similar to [Lu et al., 2018; Chu et al., 2019], we also apply
NSGA-II [Deb et al., 2002] to solve the multi-objective prob-
lem. Our work differs from them by using a hybrid controller
and a cell-based elastic search space that enables both macro
and micro search.

We take three objectives into account for the super-
resolution task,
• quantitative metric to reflect the performance of models

(PSNR),
• quantitative metric to evaluate the computational cost of

each model (mult-adds),
• number of parameters.

In addition, we consider the following constraints,
• minimal PSNR for practical visual perception,
• maximal mult-adds regarding resource limits.

3 Elastic Search Space
Our search space is designed to perform both micro and
macro search. The former is used to choose promising cells
within each cell block, which can be viewed as a feature ex-
traction selector. In contrast, the latter is aimed to search
backbone connections for different cell blocks, which plays
a role of combining features at selected levels. In addition,
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Figure 1: Neural Architecture of Super-Resolution (the arrows denote skip connections).

we use one cell block as our minimum search element for
two reasons: design flexibility, and broad representational ca-
pacity.

Typically, the super-resolution task can be divided into
three sub-procedures: feature extraction, nonlinear mapping,
and restoration. Since most of the deep learning approaches
concentrate on the second part, we design our search space
to describe the mapping while fixing others. Figure 1 depicts
our main flow for super-resolution. Thus, a complete model
contains a predefined feature extractor (a 2D convolution with
32 3 × 3 filters), n cell blocks drawn from the micro search
space which are joined by the connections from macro search
space, and subpixel-based upsampling and restoration2.

3.1 Cell-Level Micro Search Space
For simplicity, all cell blocks share the same cell search space
S. In specific, the micro search space comprises the following
elements:
• convolutions: 2D convolution, grouped convolution

with groups in {2, 4}, inverted bottleneck block with an
expansion rate of 2,
• channels: {16, 32, 48, 64},
• kernels: {1, 3},
• in-cell residual connections:{True,False},
• repeated blocks:{1, 2, 4}.

Therefore, the size of micro space for n cell blocks is 192n.

3.2 Intercell Macro Search Space
The macro search space defines the connections among dif-
ferent cell blocks. Specifically, for the i-th cell block CBi,
there are n + 1 − i choices of connections to build the in-
formation flow from the input of CBi to its following cell
blocks3. Furthermore, we use cji to represent the path from
input of CBi to CBj . We set cji = 1 if there is a connection
path between them, otherwise 0. Therefore, the size of macro
space for n cell blocks is 2n(n+1)/2. In summary, the size of
the total space is 192n × 2n(n+1)/2.

2Our upsampling contains a 2D convolution with 32 3×3 filters,
followed by a 3 × 3 convolution with one filter of unit stride.

3Here, i starts with 1.

4 Model Generator
Our model generator is a hybrid controller involving both
reinforcement learning (RL) and an evolutionary algorithm
(EA). The EA part handles the iteration process and RL
is used to bring exploitation. To be specific, the iteration
is controlled by NSGA-II [Deb et al., 2002], which con-
tains four sub-procedures: population initialization, selection,
crossover, and mutation. To avoid verbosity, we only cover
our variations to NSGA-II.

4.1 Model Meta Encoding
One model is denoted by two parts: forward-connected cells
and their information connections. We use the indices of op-
erators from the operator set to encode the cells, and a nested
list to depict the connections. Namely, given a model M with
n cells, its corresponding chromosome can be depicted by
(Mmic,Mmac), where Mmic and Mmac are defined as fol-
lows,

Mmic = (x1, x2, ..., xn) (1)

Mmac = (c1:n1 , c2:n2 , ..., cnn)

ci:ni = (cii, c
i+1
i , ..cni )

(2)

4.2 Initialization
We begin with N populations and we emphasize the diver-
sities of cells. In effect, to generate a model, we randomly
sample a cell from S and repeat it for n times. In case N
is larger than the size of S, models are arbitrarily sampled
without repeating cells.

As for connections, we sample from a categorical dis-
tribution. While in each category, we pick uniformly, i.e.
p ∼ U(0, 1). To formalize, the connections are built based
on the following rules,{ random connections 0 ≤ p < pr

dense connections pr ≤ p < pr + pden
no connnections pr + pden ≤ p < 1

(3)

4.3 Tournament Selection
We calculate the crowding distance as noted in [Chu and Yu,
2018] to render a uniform distribution of our models, and we
apply tournament selection (k = 2) to control the evolution
pressure.
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4.4 Crossover

To encourage exploration, single-point crossovers are
performed simultaneously in both micro and macro
space. Given two models A (Mmic(A),Mmac(A)) and B
(Mmic(B),Mmac(B)), a new chromosome C can be gener-
ated as,

Mmic(C) = (x1A, x2A, ..., xiB , ..., xnA)

Mmac(C) = (c1:n1A , c
2:n
2A , ..., c

j:n
jB , ..., c

n
nA)

(4)

where i and j are chosen positions respectively for micro and
macro genes. Informally, the crossover procedure contributes
more to exploitation than to exploration.

4.5 Mutation

We again apply a categorical distribution to balance explo-
ration and exploitation.

Exploration

To encourage exploration, we combine random mutation
with roulette wheel selection (RWS). Since we treat super-
resolution as a multi-objective problem, FLOPS and the num-
ber of parameters are two objectives that can be evaluated
soon after meta encodings are available. In particular, we also
sample from a categorical distribution to determine mutation
strategies, i.e. random mutation or mutated by roulette wheel
selection to handle FLOPS or parameters. Formally,{ random mutation 0 ≤ p < pmr

RWS for FLOPS pmr ≤ p < pmr + pmf
RWS for params pmr + pmf ≤ p < 1

(5)

Whenever we need to mutate a model M by RWS, we keep
Mmac unchanged. Since each cell shares the same operator
set S, we perform RWS on S for n times to generate Mmic.
Strictly speaking, given Mmac, it’s intractable to execute a
complete RWS (involving 192n models). Instead, it can be
approximated based on S (involving 192 basic operators).
Besides, we scale FLOPS and the number of parameters log-
arithmically before RWS.

Exploitation

To enhance exploitation, we apply a reinforcement driven
mutation.

We use a neural controller to mutate, which is shown in
Figure 2. Specifically, the embedding features for Mmic are
concatenated, and then are injected into 3 fully-connected
layers to generate Mmac. The last layer has n(n + 1)/2
neutrons to represent connections, with its output denoted as
Omac .

The network parameters can be partitioned into two
groups, θmic and θmac. The probability of selecting Si for
cell j is p(celli = Si|θmic) and for the connection cji = 1,
we have p(cji = 1|θmac) = Omac(i−1)∗(n+1−0.5∗i)+j . Thus, the
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Figure 2: Controller network.

gradient g(θ) can be calculated as follows:

g(θ) = −∇θ[
n∑
i=1

log p(celli = Si|θmic) ∗Ri+

n(n+1)/2∑
j=1

cj logO
mac
j ∗Rj+

(1− cj) log(1−Omacj ) ∗Rj ].

(6)

In Equation 6, Ri and Rj are the discounted accumulated re-
wards. Here, we set the discount parameter γ = 1.0.

5 Evaluator
The evaluator calculates the scores of the models generated
by the controller. In the beginning, we attempted to train an
RNN regressor to predict the performances of models, with
data collected in previous pipeline execution. However, its
validation error is too high to continue. Instead, each model
is trained for a relatively short time to roughly differentiate
various models. At the end of the incomplete training, we
evaluate mean square errors on test datasets.

6 Experiments
6.1 Setup
In our experiment, about 10k models are generated in total,
where the population for each iteration is 64. It takes less than
3 days on a Tesla-V100 with 8 GPUs to execute the pipeline
once. We use DIV2K as our training set.

During an incomplete training, each model is trained with a
batch size of 16 for 200 epochs. In addition, we apply Adam
optimizer (β1 = 0.9, β2 = 0.999) to minimize the L1 loss
between the generated high-resolution images and its ground
truth. The learning rate is initialized as 10−4 and kept un-
changed at this stage.

As for the full train, we choose 4 models with a large
crowding distance in the Pareto front between mean squared
error and mult-adds, which was generated at the incomplete
training stage. These models are trained based on DIV2K
dataset for 24000 epochs with a batch-size of 16 and it takes
less than 1.5 days. Moreover, the standard deviation of
weights w is initialized as 0.02 and the bias 0.

inno



Model Mult-Adds Params SET5 SET14 B100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRCNN [Dong et al., 2014] 52.7G 57K 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946
FSRCNN [Dong et al., 2016] 6.0G 12K 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020
VDSR [Kim et al., 2016a] 612.6G 665K 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
DRCN [Kim et al., 2016b] 17,974.3G 1,774K 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133
LapSRN [Lai et al., 2017] 29.9G 813K 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100
DRRN [Tai et al., 2017a] 6,796.9G 297K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
SelNet [Choi and Kim, 2017] 225.7G 974K 37.89/0.9598 33.61/0.9160 32.08/0.8984 -
CARN [Ahn et al., 2018] 222.8G 1,592K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
CARN-M [Ahn et al., 2018] 91.2G 412K 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9194
MoreMNAS-A [Chu et al., 2019] 238.6G 1,039K 37.63/0.9584 33.23/0.9138 31.95/0.8961 31.24/0.9187
FALSR-A (ours) 234.7G 1,021K 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256
FALSR-B (ours) 74.7G 326k 37.61/0.9585 33.29/0.9143 31.97/0.8967 31.28/0.9191
FALSR-C (ours) 93.7G 408k 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187

Table 1: Comparisons with the state-of-the-art methods based on ×2 super-resolution task.
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Figure 3: The model FALSR-A comparable to CARN.

6.2 Comparisons with State-of-the-Art
Super-Resolution Methods

After being fully trained, our model are compared with the
state-of-the-art methods on the commonly used test dataset
for super-resolution (See Table 1 and Figure 5). To be fair,
we only consider the models with comparable FLOPS. There-
fore, too deep and large models such as RDN [Zhang et al.,
2018b], RCAN [Zhang et al., 2018a] are excluded here. We
choose PSNR and SSIM as metrics by convention [Hore and
Ziou, 2010]. The comparisons are made on the×2 task. Note

feature extraction

invertBotConE2 f16 k3 b1 isskip

invertBotConE2 f48 k1 b2 isskip

conv f16 k1 b2 isskip

invertBotConE2 f32 k3 b4 noskip

conv f64 k3 b2 noskip
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conv f16 k3 b1 isskip
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Figure 4: The model FALSR-B comparable to CARN-M.

that all mult-adds are measured based on a 480× 480 input.
At a comparable level of FLOPS, our model called

FALSR-A (Figure 3) outperforms CARN [Ahn et al., 2018]
with higher scores. In addition, it dominates DRCN [Kim
et al., 2016b] and MoreMNAS-A [Chu et al., 2019] over
three objectives on four datasets. Moreover, it achieves higher
PSNR and SSIM with fewer FLOPS than VDSR [Kim et al.,
2016a], DRRN [Tai et al., 2017a] and many others.

For a more lightweight version, one model called FALSR-
B (Figure 4) dominates CARN-M, which means with fewer
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FLOPS and a smaller number of parameters it scores equally
to or higher than CARN-M. Besides, its architecture is attrac-
tive and the complexity of connections lies in between resid-
ual and dense connections. This means a dense connection is
not always the optimal way to transmit information. Useless
features from lower layers could make trouble for high layers
to restore super-resolution results.

Another lightweight model called FALSR-C (not drawn
because of space) also outperforms CARN-M. This model
uses relatively sparse connections (8 in total). We conclude
that this sparse flow works well with the selected cells.

Figure 7 shows the qualitative results against other meth-
ods.

6.3 Discussions
Cell Diversity
Our experiments show that a good cell diversity also helps
to achieve better results for super-resolution, same for clas-
sification tasks [Hsu et al., 2018]. In fact, we have trained
several models with repeated blocks, however, they underper-
form the models with diverse cells. We speculate that differ-
ent types of cells can handle input features more effectively
than monotonous ones.

Optimal Information Flow
Perhaps under given current technologies, dense connections
are not optimal in most cases. In principle, a dense connec-
tion has the capacity to cover other non-dense configurations,
however, it’s usually difficult to train a model to ignore use-
less information.

Good Assumption?
Super-resolution is different from feature extraction domains
such as classification, where more details need to be restored
at pixel level. Therefore, it rarely applies downsampling op-
erations to reduce the feature dimensions and it is more time-
consuming than classification tasks like on CIFAR-10.

Regarding the time, we use incomplete training to differ-
entiate various models. This strategy works well under an
implicit assumption: models that perform better when fully
trained also behave well with a large probability under an in-
complete training. Luckily, most of deep learning tasks share
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Figure 6: Multiple objectives of models during evolution.

this good feature. For the rest, we must train models as fully
as possible.

7 Conclusions
To sum up, we presented a novel elastic method for NAS that
incorporates both micro and macro search, dealing with neu-
ral architectures in multi-granularity. The result is exciting
as our generated models dominate the newest state-of-the-
art SR methods. Different from human-designed and single-
objective NAS models, our methods can generate different
tastes of models by one run, ranging from fast and lightweight
to relatively large and more accurate. Therefore, it offers
a feasible way for engineers to compress existing popular
human-designed models or to design various levels of archi-
tectures accordingly for constrained devices.

Our future work will focus on training a model regressor,
which estimates the performance of models, to speed up the
pipeline.
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