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Abstract

Recently, several models based on deep neural networks

have achieved great success in terms of both reconstruction

accuracy and computational performance for single image

super-resolution. In these methods, the low resolution (LR)

input image is upscaled to the high resolution (HR) space

using a single filter, commonly bicubic interpolation, before

reconstruction. This means that the super-resolution (SR)

operation is performed in HR space. We demonstrate that

this is sub-optimal and adds computational complexity. In

this paper, we present the first convolutional neural network

(CNN) capable of real-time SR of 1080p videos on a single

K2 GPU. To achieve this, we propose a novel CNN architec-

ture where the feature maps are extracted in the LR space.

In addition, we introduce an efficient sub-pixel convolution

layer which learns an array of upscaling filters to upscale

the final LR feature maps into the HR output. By doing so,

we effectively replace the handcrafted bicubic filter in the

SR pipeline with more complex upscaling filters specifically

trained for each feature map, whilst also reducing the

computational complexity of the overall SR operation. We

evaluate the proposed approach using images and videos

from publicly available datasets and show that it performs

significantly better (+0.15dB on Images and +0.39dB on

Videos) and is an order of magnitude faster than previous

CNN-based methods.

1. Introduction

The recovery of a high resolution (HR) image or video

from its low resolution (LR) counter part is topic of great

interest in digital image processing. This task, referred

to as super-resolution (SR), finds direct applications in

many areas such as HDTV [15], medical imaging [28, 33],

satellite imaging [38], face recognition [17] and surveil-

lance [53]. The global SR problem assumes LR data to

be a low-pass filtered (blurred), downsampled and noisy

version of HR data. It is a highly ill-posed problem, due

to the loss of high-frequency information that occurs dur-

ing the non-invertible low-pass filtering and subsampling

operations. Furthermore, the SR operation is effectively

a one-to-many mapping from LR to HR space which can

have multiple solutions, of which determining the correct

solution is non-trivial. A key assumption that underlies

many SR techniques is that much of the high-frequency data

is redundant and thus can be accurately reconstructed from

low frequency components. SR is therefore an inference

problem, and thus relies on our model of the statistics of

images in question.

Many methods assume multiple images are available as

LR instances of the same scene with different perspectives,

i.e. with unique prior affine transformations. These can be

categorised as multi-image SR methods [1, 11] and exploit

explicit redundancy by constraining the ill-posed problem

with additional information and attempting to invert the

downsampling process. However, these methods usually

require computationally complex image registration and

fusion stages, the accuracy of which directly impacts the

quality of the result. An alternative family of methods

are single image super-resolution (SISR) techniques [45].

These techniques seek to learn implicit redundancy that is

present in natural data to recover missing HR information

from a single LR instance. This usually arises in the form of

local spatial correlations for images and additional temporal

correlations in videos. In this case, prior information in the

form of reconstruction constraints is needed to restrict the

solution space of the reconstruction.
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Figure 1. The proposed efficient sub-pixel convolutional neural network (ESPCN), with two convolution layers for feature maps extraction,

and a sub-pixel convolution layer that aggregates the feature maps from LR space and builds the SR image in a single step.

1.1. Related Work

The goal of SISR methods is to recover a HR image from

a single LR input image [14]. Recent popular SISR methods

can be classified into edge-based [35], image statistics-

based [9, 18, 46, 12] and patch-based [2, 43, 52, 13, 54,

40, 5] methods. A detailed review of more generic SISR

methods can be found in [45]. One family of approaches

that has recently thrived in tackling the SISR problem is

sparsity-based techniques. Sparse coding is an effective

mechanism that assumes any natural image can be sparsely

represented in a transform domain. This transform domain

is usually a dictionary of image atoms [25, 10], which can

be learnt through a training process that tries to discover

the correspondence between LR and HR patches. This

dictionary is able to embed the prior knowledge necessary

to constrain the ill-posed problem of super-resolving unseen

data. This approach is proposed in the methods of [47, 8].

A drawback of sparsity-based techniques is that introducing

the sparsity constraint through a nonlinear reconstruction is

generally computationally expensive.

Image representations derived via neural networks [21,

49, 34] have recently also shown promise for SISR. These

methods, employ the back-propagation algorithm [22] to

train on large image databases such as ImageNet [30] in or-

der to learn nonlinear mappings of LR and HR image patch-

es. Stacked collaborative local auto-encoders are used in [4]

to super-resolve the LR image layer by layer. Osendorfer et

al. [27] suggested a method for SISR based on an extension

of the predictive convolutional sparse coding framework

[29]. A multiple layer convolutional neural network (CNN)

inspired by sparse-coding methods is proposed in [7]. Chen

et. al. [3] proposed to use multi-stage trainable nonlinear

reaction diffusion (TNRD) as an alternative to CNN where

the weights and the nonlinearity is trainable. Wang et. al

[44] trained a cascaded sparse coding network from end to

end inspired by LISTA (Learning iterative shrinkage and

thresholding algorithm) [16] to fully exploit the natural

sparsity of images. The network structure is not limited to

neural networks, for example, a random forest [31] has also

been successfully used for SISR.

1.2. Motivations and contributions

Figure 2. Plot of the trade-off between accuracy and speed for

different methods when performing SR upscaling with a scale

factor of 3. The results presents the mean PSNR and run-time

over the images from Set14 run on a single CPU core clocked at

2.0 GHz.

With the development of CNN, the efficiency of the al-

gorithms, especially their computational and memory cost,

gains importance [36]. The flexibility of deep network mod-

els to learn nonlinear relationships has been shown to attain

superior reconstruction accuracy compared to previously

hand-crafted models [27, 7, 44, 31, 3]. To super-resolve

a LR image into HR space, it is necessary to increase the

resolution of the LR image to match that of the HR image

at some point.

In Osendorfer et al. [27], the image resolution is

increased in the middle of the network gradually. Another

popular approach is to increase the resolution before or

at the first layer of the network [7, 44, 3]. However,

this approach has a number of drawbacks. Firstly, in-

creasing the resolution of the LR images before the image
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enhancement step increases the computational complexity.

This is especially problematic for convolutional networks,

where the processing speed directly depends on the input

image resolution. Secondly, interpolation methods typically

used to accomplish the task, such as bicubic interpolation

[7, 44, 3], do not bring additional information to solve the

ill-posed reconstruction problem.

Learning upscaling filters was briefly suggested in the

footnote of Dong et.al. [6]. However, the importance of

integrating it into the CNN as part of the SR operation

was not fully recognised and the option not explored.

Additionally, as noted by Dong et al. [6], there are no

efficient implementations of a convolution layer whose

output size is larger than the input size and well-optimized

implementations such as convnet [21] do not trivially allow

such behaviour.

In this paper, contrary to previous works, we propose to

increase the resolution from LR to HR only at the very end

of the network and super-resolve HR data from LR feature

maps. This eliminates the need to perform most of the SR

operation in the far larger HR resolution. For this purpose,

we propose a more efficient sub-pixel convolution layer to

learn the upscaling operation for image and video super-

resolution.

The advantages of these contributions are two fold:

• In our network, upscaling is handled by the last layer

of the network. This means each LR image is direct-

ly fed to the network and feature extraction occurs

through nonlinear convolutions in LR space. Due to

the reduced input resolution, we can effectively use

a smaller filter size to integrate the same information

while maintaining a given contextual area. The resolu-

tion and filter size reduction lower the computational

and memory complexity substantially enough to allow

super-resolution of high definition (HD) videos in real-

time as shown in Sec. 3.5.

• For a network with L layers, we learn nL−1 upscaling

filters for the nL−1 feature maps as opposed to one

upscaling filter for the input image. In addition, not

using an explicit interpolation filter means that the net-

work implicitly learns the processing necessary for SR.

Thus, the network is capable of learning a better and

more complex LR to HR mapping compared to a single

fixed filter upscaling at the first layer. This results in

additional gains in the reconstruction accuracy of the

model as shown in Sec. 3.3.2 and Sec. 3.4.

We validate the proposed approach using images and

videos from publicly available benchmarks datasets and

compared our performance against previous works includ-

ing [7, 3, 31]. We show that the proposed model achieves

state-of-art performance and is nearly an order of magnitude

faster than previously published methods on images and

videos.

2. Method

The task of SISR is to estimate a HR image I
SR

given a LR image I
LR downscaled from the corresponding

original HR image I
HR. The downsampling operation is

deterministic and known: to produce I
LR from I

HR, we

first convolve I
HR using a Gaussian filter - thus simulating

the camera’s point spread function - then downsample the

image by a factor of r. We will refer to r as the upscaling

ratio. In general, both I
LR and I

HR can have C colour

channels, thus they are represented as real-valued tensors of

size H ×W × C and rH × rW × C, respectively.

To solve the SISR problem, the SRCNN proposed in [7]

recovers from an upscaled and interpolated version of ILR

instead of I
LR. To recover I

SR, a 3 layer convolutional

network is used. In this section we propose a novel network

architecture, as illustrated in Fig. 1, to avoid upscaling I
LR

before feeding it into the network. In our architecture, we

first apply a l layer convolutional neural network directly to

the LR image, and then apply a sub-pixel convolution layer

that upscales the LR feature maps to produce I
SR.

For a network composed of L layers, the first L−1 layers

can be described as follows:

f1(ILR;W1, b1) = φ
(

W1 ∗ I
LR + b1

)

, (1)

f l(ILR;W1:l, b1:l) = φ
(

Wl ∗ f
l−1

(

I
LR

)

+ bl
)

, (2)

Where Wl, bl, l ∈ (1, L − 1) are learnable network

weights and biases respectively. Wl is a 2D convolution

tensor of size nl−1×nl×kl×kl, where nl is the number of

features at layer l, n0 = C, and kl is the filter size at layer

l. The biases bl are vectors of length nl. The nonlinearity

function (or activation function) φ is applied element-wise

and is fixed. The last layer fL has to convert the LR feature

maps to a HR image I
SR.

2.1. Deconvolution layer

The addition of a deconvolution layer is a popular

choice for recovering resolution from max-pooling and

other image down-sampling layers. This approach has

been successfully used in visualizing layer activations [49]

and for generating semantic segmentations using high level

features from the network [24]. It is trivial to show that

the bicubic interpolation used in SRCNN is a special case

of the deconvolution layer, as suggested already in [24, 7].

The deconvolution layer proposed in [50] can be seen as

multiplication of each input pixel by a filter element-wise

with stride r, and sums over the resulting output windows

also known as backwards convolution [24]. However, any

reduction (summing) after convolution is expensive.
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2.2. Efficient subpixel convolution layer

Figure 3. The first-layer filters trained on ImageNet with an up-

scaling factor of 3. The filters are sorted based on their variances.

The other way to upscale a LR image is convolution

with fractional stride of 1
r in the LR space as mentioned by

[24], which can be naively implemented by interpolation,

perforate [27] or un-pooling [49] from LR space to HR

space followed by a convolution with a stride of 1 in HR

space. These implementations increase the computational

cost by a factor of r2, since convolution happens in HR

space.

Alternatively, a convolution with stride of 1
r in the LR s-

pace with a filter Ws of size ks with weight spacing 1
r would

activate different parts of Ws for the convolution. The

weights that fall between the pixels are simply not activated

and do not need to be calculated. The number of activation

patterns is exactly r2. Each activation pattern, according

to its location, has at most ⌈ks

r ⌉
2

weights activated. These

patterns are periodically activated during the convolution of

the filter across the image depending on different sub-pixel

location: mod (x, r) ,mod (y, r) where x, y are the output

pixel coordinates in HR space. In this paper, we propose

an effective way to implement the above operation when

mod (ks, r) = 0:

I
SR = fL(ILR) = PS

(

WL ∗ fL−1(ILR) + bL
)

, (3)

where PS is an periodic shuffling operator that rear-

ranges the elements of a H ×W ×C · r2 tensor to a tensor

of shape rH × rW × C. The effects of this operation are

illustrated in Fig. 1. Mathematically, this operation can be

described in the following way

PS(T )x,y,c = T⌊x/r⌋,⌊y/r⌋,c·r·mod(y,r)+c·mod(x,r) (4)

The convolution operator WL thus has shape nL−1 ×
r2C × kL × kL. Note that we do not apply nonlinearity to

the outputs of the convolution at the last layer. It is easy to

see that when kL = ks

r and mod (ks, r) = 0 it is equivalent

to sub-pixel convolution in the LR space with the filter Ws.

We will refer to our new layer as the sub-pixel convolution

layer and our network as efficient sub-pixel convolutional

neural network (ESPCN). This last layer produces a HR

image from LR feature maps directly with one upscaling

filter for each feature map as shown in Fig. 4.

Given a training set consisting of HR image examples

I
HR
n , n = 1 . . . N , we generate the corresponding LR

images ILR
n , n = 1 . . . N , and calculate the pixel-wise mean

squared error (MSE) of the reconstruction as an objective

function to train the network:

ℓ(W1:L, b1:L) =
1

r2HW

rH
∑

x=1

rW
∑

x=1

(

I
HR
x,y − fL

x,y(I
LR)

)2

(5)

It is noticeable that the implementation of the above

periodic shuffling can be very fast compared to reduction

or convolution in HR space because each operation is

independent and is thus trivially parallelizable in one cycle.

Thus our proposed layer is log2r
2 times faster compared

to deconvolution layer in the forward pass and r2 times

faster compared to implementations using various forms of

upscaling before convolution.

3. Experiments

The detailed report of quantitative evaluation includ-

ing the original data including images and videos, down-

sampled data, super-resolved data, overall and individual

scores and run-times on a K2 GPU are provided in the

supplemental material.

3.1. Datasets

During the evaluation, we used publicly available bench-

mark datasets including the Timofte dataset [40] widely

used by SISR papers [7, 44, 3] which provides source

code for multiple methods, 91 training images and two

test datasets Set5 and Set14 which provides 5 and 14

images; The Berkeley segmentation dataset [26] BSD300

and BSD500 which provides 100 and 200 images for

testing and the super texture dataset [5] which provides

136 texture images. For our final models, we use 50,000

randomly selected images from ImageNet [30] for the

training. Following previous works, we only consider the

luminance channel in YCbCr colour space in this section

because humans are more sensitive to luminance changes

[31]. For each upscaling factor, we train a specific network.

For video experiments we use 1080p HD videos from

the publicly available Xiph database1, which has been used

to report video SR results in previous methods [37, 23].

The database contains a collection of 8 HD videos approx-

imately 10 seconds in length and with width and height

1920 × 1080. In addition, we also use the Ultra Video

Group database2, containing 7 videos of 1920 × 1080 in

1Xiph.org Video Test Media [derf’s collection] https://media.

xiph.org/video/derf/
2Ultra Video Group Test Sequences http://ultravideo.cs.

tut.fi/
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Figure 4. The last-layer filters trained on ImageNet with an upscaling factor of 3: (a) shows weights from SRCNN 9-5-5 model [7], (b)

shows weights from ESPCN (ImageNet relu) model and (c) weights from (b) after the PS operation applied to the r2 channels. The filters

are in their default ordering.

(a) Baboon Original (b) Bicubic / 23.21db (c) SRCNN [7] / 23.67db (d) TNRD [3] / 23.62db (e) ESPCN / 23.72db

(f) Comic Original (g) Bicubic / 23.12db (h) SRCNN [7] / 24.56db (i) TNRD [3] / 24.68db (j) ESPCN / 24.82db

(k) Monarch Original (l) Bicubic / 29.43db (m) SRCNN [7] / 32.81db (n) TNRD [3] / 33.62db (o) ESPCN / 33.66db

Figure 5. Super-resolution examples for ”Baboon”, ”Comic” and ”Monarch” from Set14 with an upscaling factor of 3. PSNR values are

shown under each sub-figure.
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size and 5 seconds in length.

3.2. Implementation details

For the ESPCN, we set l = 3, (f1, n1) = (5, 64),
(f2, n2) = (3, 32) and f3 = 3 in our evaluations. The

choice of the parameter is inspired by SRCNN’s 3 layer 9-5-

5 model and the equations in Sec. 2.2. In the training phase,

17r × 17r pixel sub-images are extracted from the training

ground truth images I
HR, where r is the upscaling factor.

To synthesize the low-resolution samples ILR, we blur IHR

using a Gaussian filter and sub-sample it by the upscaling

factor. The sub-images are extracted from original images

with a stride of (17 −
∑

mod (f, 2)) × r from I
HR and a

stride of 17 −
∑

mod (f, 2) from I
LR. This ensures that

all pixels in the original image appear once and only once

as the ground truth of the training data. We choose tanh

instead of relu as the activation function for the final model

motivated by our experimental results.

The training stops after no improvement of the cost

function is observed after 100 epochs. Initial learning

rate is set to 0.01 and final learning rate is set to 0.0001

and updated gradually when the improvement of the cost

function is smaller than a threshold µ. The final layer

learns 10 times slower as in [7]. The training takes roughly

three hours on a K2 GPU on 91 images, and seven days

on images from ImageNet [30] for upscaling factor of 3.

We use the PSNR as the performance metric to evaluate

our models. PSNR of SRCNN and Chen’s models on our

extended benchmark set are calculated based on the Matlab

code and models provided by [7, 3].

3.3. Image superresolution results

3.3.1 Benefits of the sub-pixel convolution layer

In this section, we demonstrate the positive effect of the sub-

pixel convolution layer as well as tanh activation function.

We first evaluate the power of the sub-pixel convolution

layer by comparing against SRCNN’s standard 9-1-5 model

[6]. Here, we follow the approach in [6], using relu as the

activation function for our models in this experiment, and

training a set of models with 91 images and another set with

images from ImageNet. The results are shown in Tab. 1.

ESPCN with relu trained on ImageNet images achieved

statistically significantly better performance compared to

SRCNN models. It is noticeable that ESPCN (91) performs

very similar to SRCNN (91). Training with more images

using ESPCN has a far more significant impact on PSNR

compared to SRCNN with similar number of parameters

(+0.33 vs +0.07).

To make a visual comparison between our model with

the sub-pixel convolution layer and SRCNN, we visualized

weights of our ESPCN (ImageNet) model against SRCNN

9-5-5 ImageNet model from [7] in Fig. 3 and Fig. 4. The

weights of our first and last layer filters have a strong sim-

ilarity to designed features including the log-Gabor filters

[48], wavelets [20] and Haar features [42]. It is noticeable

that despite each filter is independent in LR space, our

independent filters is actually smooth in the HR space after

PS . Compared to SRCNN’s last layer filters, our final layer

filters has complex patterns for different feature maps, it

also has much richer and more meaningful representations.

We also evaluated the effect of tanh activation function

based on the above model trained on 91 images and Ima-

geNet images. Results in Tab. 1 suggests that tanh function

performs better for SISR compared to relu. The results for

ImageNet images with tanh activation is shown in Tab. 2.

3.3.2 Comparison to the state-of-the-art

In this section, we show ESPCN trained on ImageNet

compared to results from SRCNN [7] and the TNRD [3]

which is currently the best performing approach published.

For simplicity, we do not show results which are known to

be worse than [3]. For the interested reader, the results of

other previous methods can be found in [31]. We choose to

compare against the best SRCNN 9-5-5 ImageNet model in

this section [7]. And for [3], results are calculated based on

the 7× 7 5 stages model.

Our results shown in Tab. 2 are significantly better than

the SRCNN 9-5-5 ImageNet model, whilst being close to,

and in some cases out-performing, the TNRD [3]. Although

TNRD uses a single bicubic interpolation to upscale the in-

put image to HR space, it possibly benefits from a trainable

nonlinearity function. This trainable nonlinearity function

is not exclusive from our network and will be interesting

to explore in the future. Visual comparison of the super-

resolved images is given in Fig. 5 and Fig. 6, the CNN

methods create a much sharper and higher contrast images,

ESPCN provides noticeably improvement over SRCNN.

3.4. Video superresolution results

In this section, we compare the ESPCN trained models

against single frame bicubic interpolation and SRCNN [7]

on two popular video benchmarks. One big advantage of

our network is its speed. This makes it an ideal candidate

for video SR which allows us to super-resolve the videos

frame by frame. Our results shown in Tab. 3 and Tab. 4

are better than the SRCNN 9-5-5 ImageNet model. The

improvement is more significant than the results on the

image data, this maybe due to differences between datasets.

Similar disparity can be observed in different categories of

the image benchmark as Set5 vs SuperTexture.
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(a) 14092 Original (b) Bicubic / 29.06db (c) SRCNN [7] / 29.74db (d) TNRD [3] / 29.74db (e) ESPCN / 29.78db

(f) 335094 Original (g) Bicubic / 22.24db (h) SRCNN [7] / 23.96db (i) TNRD [3] / 24.15db (j) ESPCN / 24.14db

(k) 384022 Original (l) Bicubic / 25.42db (m) SRCNN [7] / 26.72db (n) TNRD [3] / 26.74db (o) ESPCN / 26.86db

Figure 6. Super-resolution examples for ”14092”, ”335094” and ”384022” from BSD500 with an upscaling factor of 3. PSNR values are

shown under each sub-figure.

Dataset Scale SRCNN (91) ESPCN (91 relu) ESPCN (91) SRCNN (ImageNet) ESPCN (ImageNet relu)

Set5 3 32.39 32.39 32.55 32.52 33.00

Set14 3 29.00 28.97 29.08 29.14 29.42

BSD300 3 28.21 28.20 28.26 28.29 28.52

BSD500 3 28.28 28.27 28.34 28.37 28.62

SuperTexture 3 26.37 26.38 26.42 26.41 26.69

Average 3 27.76 27.76 27.82 27.83 28.09

Table 1. The mean PSNR (dB) for different models. Best results for each category are shown in bold. There is significant difference

between the PSNRs of the proposed method and other methods (p-value < 0.001 with paired t-test).

3.5. Run time evaluations

In this section, we evaluated our best model’s run time on

Set143 with an upscale factor of 3. We evaluate the run time

of other methods [2, 51, 39] from the Matlab codes provided

by [40] and [31]. For methods which use convolutions in-

cluding our own, a python/theano implementation is used to

improve the efficiency based on the Matlab codes provided

in [7, 3]. The results are presented in Fig. 2. Our model

runs a magnitude faster than the fastest methods published

so far. Compared to SRCNN 9-5-5 ImageNet model, the

number of convolution required to super-resolve one image

is r× r times smaller and the number of total parameters of

the model is 2.5 times smaller. The total complexity of the

3It should be noted our results outperform all other algorithms in

accuracy on the larger BSD datasets. However, the use of Set14 on a single

CPU core is selected here in order to allow a straight-forward comparison

with results from previous published results [31, 6].

super-resolution operation is thus 2.5 × r × r times lower.

We have achieved a stunning average speed of 4.7ms for

super-resolving one single image from Set14 on a K2 GPU.

Utilising the amazing speed of the network, it will be inter-

esting to explore ensemble prediction using independently

trained models as discussed in [36] to achieve better SR

performance in the future.

We also evaluated run time of 1080 HD video super-

resolution using videos from the Xiph and the Ultra Video

Group database. With upscale factor of 3, SRCNN 9-5-5

ImageNet model takes 0.435s per frame whilst our ESPCN

model takes only 0.038s per frame. With upscale factor of

4, SRCNN 9-5-5 ImageNet model takes 0.434s per frame

whilst our ESPCN model takes only 0.029s per frame.
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Dataset Scale Bicubic SRCNN TNRD ESPCN

Set5 3 30.39 32.75 33.17 33.13

Set14 3 27.54 29.30 29.46 29.49

BSD300 3 27.21 28.41 28.50 28.54

BSD500 3 27.26 28.48 28.59 28.64

SuperTexture 3 25.40 26.60 26.66 26.70

Average 3 26.74 27.98 28.07 28.11

Set5 4 28.42 30.49 30.85 30.90

Set14 4 26.00 27.50 27.68 27.73

BSD300 4 25.96 26.90 27.00 27.06

BSD500 4 25.97 26.92 27.00 27.07

SuperTexture 4 23.97 24.93 24.95 25.07

Average 4 25.40 26.38 26.45 26.53

Table 2. The mean PSNR (dB) of different methods evaluated on

our extended benchmark set. Where SRCNN stands for the SR-

CNN 9-5-5 ImageNet model [7], TNRD stands for the Trainable

Nonlinear Reaction Diffusion Model from [3] and ESPCN stands

for our ImageNet model with tanh activation. Best results for

each category are shown in bold. There is significant difference

between the PSNRs of the proposed method and SRCNN (p-value

< 0.01 with paired ttest)

Dataset Scale Bicubic SRCNN ESPCN

SunFlower 3 41.72 43.29 43.36

Station2 3 36.42 38.17 38.32

PedestrianArea 3 37.65 39.21 39.27

SnowMnt 3 26.00 27.23 27.20

Aspen 3 32.75 34.65 34.61

OldTownCross 3 31.20 32.44 32.53

DucksTakeOff 3 26.71 27.66 27.69

CrowdRun 3 26.87 28.26 28.39

Average 3 32.41 33.86 33.92

SunFlower 4 38.99 40.57 41.00

Station2 4 34.13 35.72 35.91

PedestrianArea 4 35.49 36.94 36.94

SnowMnt 4 24.14 24.87 25.13

Aspen 4 30.06 31.51 31.83

OldTownCross 4 29.49 30.43 30.54

DucksTakeOff 4 24.85 25.44 25.64

CrowdRun 4 25.21 26.24 26.40

Average 4 30.30 31.47 31.67

Table 3. Results on HD videos from Xiph database. Where

SRCNN stands for the SRCNN 9-5-5 ImageNet model [7] and

ESPCN stands for our ImageNet model with tanh activation.

Best results for each category are shown in bold. There is

significant difference between the PSNRs of the proposed method

and SRCNN (p-value < 0.01 with paired t-test)

4. Conclusion

In this paper, we demonstrate that fixed filter upscaling

at the first layer does not provide any extra information

for SISR yet requires more computational complexity. To

address the problem, we propose to perform the feature

extraction stages in the LR space instead of HR space.

To do that we propose a novel sub-pixel convolution layer

which is capable of super-resolving LR data into HR space

with very little additional computational cost compared

Dataset Scale Bicubic SRCNN ESPCN

Bosphorus 3 39.38 41.07 41.25

ReadySetGo 3 34.64 37.33 37.37

Beauty 3 39.77 40.46 40.54

YachtRide 3 34.51 36.07 36.18

ShakeNDry 3 38.79 40.26 40.47

HoneyBee 3 40.97 42.66 42.89

Jockey 3 41.86 43.62 43.73

Average 3 38.56 40.21 40.35

Bosphorus 4 36.47 37.53 38.06

ReadySetGo 4 31.69 33.69 34.22

Beauty 4 38.79 39.48 39.60

YachtRide 4 32.16 33.17 33.59

ShakeNDry 4 35.68 36.68 37.11

HoneyBee 4 38.76 40.51 40.87

Jockey 4 39.85 41.55 41.92

Average 4 36.20 37.52 37.91

Table 4. Results on HD videos from Ultra Video Group database.

Where SRCNN stands for the SRCNN 9-5-5 ImageNet model [7]

and ESPCN stands for our ImageNet model with tanh activation.

Best results for each category are shown in bold. There is

significant difference between the PSNRs of the proposed method

and SRCNN (p-value < 0.01 with paired t-test)

to a deconvolution layer [50]. Evaluation performed on

an extended bench mark data set with upscaling factor of

4 shows that we have a significant speed (> 10×) and

performance (+0.15dB on Images and +0.39dB on videos)

boost compared to the previous CNN approach with more

parameters [7] (5-3-3 vs 9-5-5). This makes our model the

first CNN model that is capable of SR HD videos in real

time on a single GPU.

5. Future work

A reasonable assumption when processing video in-

formation is that most of a scene’s content is shared by

neighbouring video frames. Exceptions to this assumption

are scene changes and objects sporadically appearing or

disappearing from the scene. This creates additional data-

implicit redundancy that can be exploited for video super-

resolution as has been shown in [32, 23]. Spatio-temporal

networks are popular as they fully utilise the temporal infor-

mation from videos for human action recognition [19, 41].

In the future, we will investigate extending our ESPCN

network into a spatio-temporal network to super-resolve

one frame from multiple neighbouring frames using 3D

convolutions.
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